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ABSTRACT

There are a growing number of machine learning algorithms which
operate on graphs. Example applications for these algorithms in-
clude predicting which customers will recommend products to their
friends in a viral marketing campaign using a customer network,
predicting the topics of publications in a citation network, or pre-
dicting the political affiliations of people in a social network. It is
important for an analyst to have tools to help compare the output
of these machine learning algorithms. In this work, we present G-
PARE, a visual analytic tool for comparing two uncertain graphs,
where each uncertain graph is produced by a machine learning al-
gorithm which outputs probabilities over node labels. G-PARE pro-
vides several different views which allow users to obtain a global
overview of the algorithms output, as well as focused views that
show subsets of nodes of interest. By providing an adaptive explo-
ration environment, G-PARE guides the users to places in the graph
where two algorithms predictions agree and places where they dis-
agree. This enables the user to follow cascades of misclassifications
by comparing the algorithms outcome with the ground truth. After
describing the features of G-PARE, we illustrate its utility through
several use cases based on networks from different domains.
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1 INTRODUCTION

In today’s linked world, graphs can be used to represent communi-
cation networks, social networks, financial transaction networks,
gene regulatory networks, disease transmission networks, sensor
networks and more. Different machine learning algorithms can be
applied to observational data describing these networks to obtain
predictive models. However, since the output is typically proba-
bilistic and the input data is often noisy, it is not always clear which
learning algorithm leads to models with the highest predictive ac-
curacy or how different models compare. In this paper, we present
G-PARE, an interactive tool for comparing the commonalities and
differences among two predictive models and ground truth.

Graph analysis and visual display have a long and rich history;
there are many visual analytics systems that have been proposed to
support decision making over graph data. In this work, we look at a
special type of graph, which we refer to as an uncertain graph, and
the analytic task that we focus on is comparative analysis.

Our work is motivated by the desire to be able to understand the
output of machine learning algorithms which operate on graphs.
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The generic category of algorithms we consider are node labeling
algorithms, which take as input a partially observed graph, and out-
put a graph with probability distributions over the unobserved labels
of the nodes in the graph. We call this output graph an uncertain
graph, because it has probability distributions over the node labels.

There are a wide variety of node labeling algorithms that have
been proposed [9, 26, 30, 36]. Some machine learning algorithms
may look only at attributes of the nodes to make predictions for
labels [9], while others look at both the attributes and the labels
of the neighbors [30, 36]. There are also simple algorithms which
assign labels based on the proportion of neighbors with a given label
[26]. Many of the models for disease spread and viral marketing can
be cast as node labeling algorithms as well [24, 35].

This work supports the comparison of uncertain graphs that are
output by different node labeling algorithms (which we refer to as
models, for simplicity). This serves two main purposes: a) it helps
the algorithm designer understand the dynamics of their node label-
ing algorithms and b) it can shed important light on a graph dataset,
by showing where there is agreement among different models (this
could be interpreted as areas where there is higher confidence in
the predictions), and where there is disagreement, indicating a need
to examine the data more closely, to see if there are errors or other
interesting causes.

We have developed a visual analytic tool called G-PARE which
supports the comparison of uncertain graphs. G-PARE uses a col-
lection of views that allow users to see and compare the models out-
put by different algorithms. It supports a variety of ways for find-
ing where the models agree and where they disagree. It introduces
a novel overlaid node-link diagram which supports showing both
models and a comparison of their distributions on a single graph. It
allows users to see the local neighborhood of a node, and quickly
see if there is one node in isolation that has been misclassified, or
if a large number of its neighbors have also been misclassified. The
tool also allows users to follow “chains” of misclassification in the
graph. In addition, the tool allows users to find larger regions in
graph that are mostly agreeing or disagreeing.

The contributions of this work include: 1) an interactive vi-
sual analytic framework for uncertain graphs, 2) a comparative
framework which supports macro-level comparative analysis for
the entire graph, micro-level comparison of individual nodes, and
meso-level comparison of neighborhoods around nodes, 3) a novel
node visualization that captures uncertainty and comparison for the
nodes in a node-link diagram, 4) a technique for allowing users to
follow chains and cascades of misclassification, and 5) the descrip-
tion of several different use cases.

1.1 Uncertain Graph Data Model

The uncertain graph model that we introduce here is meant to be
generic and simple, yet generic enough to capture a range of prob-
abilistic semantics. As such, we are agnostic as to the exact under-
lying probabilistic model which produced the output. G-PARE uses
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Figure 1: An overview of G-PARE applied to citation network data.

categorical labels, where the visualization is optimized for a range
of labels from a few to a dozen or so; these are common ranges for
the output of machine learning classification algorithms. Further,
the label probabilities do not have to be the output of a machine
learning algorithm; they can represent the assessment of a domain
expert, or can be extracted from data in some other way. We do,
however, for the purposes of this paper, assume that the only un-
certainty is over the node labels (this is sometimes called attribute
uncertainty) and the edges do not have uncertainty associated with
them.

2 RELATED WORK

There is a long tradition of work on uncertainty including defin-
ing the sources, types, and general approaches in visualizing uncer-
tainty [15, 32, 34]. Pang et al. [32] define three general sources
of uncertainty: data acquisition (through imprecise measurements,
numerical models, or data entry), data transformation (through re-
sampling and computers with limited precision), and visualization
(due to errors and limitations in rendering the visualization). G-
PARE addresses all three sources of uncertainty, providing means
of comparing data acquisition and transformation uncertainty out-
put, as well as providing multiple ways of visualizing uncertainty
(through coordinated views) to minimize uncertainty through visu-
alization. Pang et al. also define three categories of uncertainty:
statistical (based on probability and confidence), error (based on
differences between estimates and actual values), and range (in-
tervals of possible values). G-PARE handles statistical and error
uncertainty by supporting not only comparisons among probabilis-
tic outputs, but also comparison to ground truth. Exploring ways
to address range uncertainty is part of future work. Pham et al.
[34] summarizes techniques for visualizing uncertainty including
intrinsic representations (e.g., texture, color, size, shape), related
representations (e.g., boundary, transparency), and extrinsic repre-
sentations (e.g., bar graphs, histograms). G-PARE provides a way
of visualizing uncertainty differences using a novel combination of
multiple intrinsic and relation representations on the network view.
G-PARE also applies extrinsic representations (shown in the tabular

and matrix views) through the use of coordinated views.

Likewise, there is long tradition of work on visualizing net-
works. A number of interactive visualizations for networks have
been proposed [1, 4, 7, 17, 29, 33, 37], along with different toolkits
[3, 18, 31]. Most approaches use a node-link diagram as the basis
for their visualization. Exceptions include ManyNets [12] which
uses a tabular interface to analyze different node, edge and network
statistics, and NodeTrix [19] which integrates matrices of the net-
work connectivity and a node-link diagram. Our work builds upon
these different traditions; our network view uses prefuse toolkit and
our tabular view is inspired and partially developed on ManyNets.
Similar to D-Dupe [6], C-Group [20], SocialAction [33], and Net-
Clinic [25], G-Pare integrates data analysis techniques with graph
visualizations.

A more recent trend is the interest in using visual analytic tools
to better understand the strengths and weaknesses of models gen-
erated by different machine learning algorithms. WEKA [16], a
suite of machine learning software developed by the University of
Waikato, incorporates a set of illustrative plots and charts for visu-
alizing the output of different machine learning models. iVisClas-
sifier [10] makes the output of the classifier interpretable by pre-
senting the pairwise cluster distances in a heatmap matrix, showing
the attribute values of different dimensions in parallel coordinates
after dimensionality reduction. Orange [11] presents a framework
for visual exploration of the data and the model, providing various
visualization options such as scatterplots, dendograms, trees, etc.
Migut and Worring [28] also present an approach to visualize both
model and data along with a framework to interact with the sys-
tem in order to improve the model. ManiMatrix [21] provides a
matrix interface to adjust the costs associated with different types
of misclassification and lets the users refine the model accordingly.
Similar to our approach, EnsembleMatrix [38] also uses a heatmap-
like confusion matrix. It provides visual comparison method of the
output of several models with the ground truth and lets the users
adjust the weight of each model to create an ensemble learner.

While all these tools support analysis of predictive models, none
of them support analysis of uncertain graphs. The closest work to



doing this is Cesario et al. [8] which proposes a set of linked views
(parallel coordinates, bullseye, etc.) that highlight uncertainty of
node labels in a single uncertain graph. While useful for seeing
the distribution of node attribute labels, detailed analysis is difficult
since the views support only aggregate comparisons, and there is no
interactive component for selection and filtering.

3 TooL DESCRIPTION

G-PARE provides an interactive environment for the users to ex-
plore the commonalities and differences between two uncertain
graphs. G-PARE also supports comparing the models to the ground
truth when it is available. G-PARE is composed of three coordi-
nated views: a tabular view, a matrix view, and a network view.
The views provide different levels of detail, allowing users to under-
stand differences at the aggregate model level, the uncertain graph
neighborhood level, and the detailed node level.

G-PARE is written in JavaT™and uses various toolkits to sup-
port building the different views. The network view is based on
the prefuse visualization toolkit [18]. The tabular view, which
shows the predicted labels and the distributions of compared mod-
els, builds upon ManyNets [12]. Finally, the matrix view uses stan-
dard Java™ graphical components for implementing the confusion
matrix.

The main system architecture of G-PARE is based on two core
components: a data access API and a visualization manager. The
data API is responsible for obtaining network data and model infor-
mation from a user-specified data source. The visualization man-
ager is responsible for handling the creation and management of
the UL, as well as the coordination across the different views.

To illustrate the features of G-PARE, we will use a document
citation dataset as a motivating example. In this dataset, there
are documents, and the links between documents represent cita-
tion links. The documents can have one of seven possible topics
(“Case Based”, “Genetic Algorithms”, “Neural Networks”, “Prob-
abilistic Methods”, ‘“Reinforcement Learning”, “Rule Learning”,
“Theory” ). We will compare two different algorithms for predict-
ing the topic/label of a document. The first algorithm uses only the
words in the document to predict the topic. The second algorithm
uses the topic labels of the documents which cite or are cited by the
document. We refer to the output of the first algorithm as Modell
and the second as Model?2.

Figure 1 shows G-PARE interface, visualizing the two models
output using the described citation network. The network statistics
panel in the upper left shows summary information about the under-
lying network, including the number of nodes, the number of edges,
and the average degree. When ground truth is available, the over-
all accuracy of both models’ predictions is displayed in the same
panel. Finally, the legend panel is located in the upper right of Fig-
ure 1. Here, node label values are mapped to different colors. These
colors are used consistently across both the network view and the
tabular view, allowing for visual coordination across views.

3.1 Tabular View

The tabular view (Figure 2) provides a side-by-side comparison of
the models’ predictions at the node-level. Each row in the tabular
view corresponds to a node in the underlying network. The columns
show information about the nodes according to one of the models.
The first column shows the identifier for each node in the network.
The next two columns show the most probable label for the node
according to Modell and Model2, respectively. In cases where the
ground truth is available, there will be another column following
these two that shows the true label for the corresponding node. The
following two columns show the probability distributions over all
possible node labels under the two models. This distribution is rep-
resented as a color-coded histogram, where the height of each bar
represents the probability that a specific node label is the ‘true’ label
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Figure 2: Tabular View

for the node. The last column shows a distance measured between
the two distributions. We use symmetric Kullback-Leibler (KL) di-
vergence [23] between the two probability distributions, but other
measures are possible. Above each column header is a visual sum-
mary of the information contained in the column across all nodes.
For example, the second column summarizes the number of times
the model selects each node label. This allows users to quickly
compare both the node details and the summary information within
the same view. Lastly, the tabular view also supports common oper-
ations such as sorting, filtering, and multiple-selection of the nodes.

As an example of the kind of comparative analytics the tabular
view supports, consider the first two rows in Figure 2, correspond-
ing to publication numbers 354004 and 3828. For paper 354004, we
quickly see that both models agree about the most probable node la-
bel; the two models agree that the most likely label is ”Probabilistic
Methods” (all of the probability mass is in that column) and the
KL divergence between the distributions is 0. For paper 3828, we
see that the two models disagree about the most probable node la-
bel: Modell predicts the paper to be a “Neural Networks” paper,
while Model2 predicts “Case Based”. Furthermore, for this exam-
ple, there is a considerable difference between the probability dis-
tributions of the node labels inferred by the two models. Further
investigation of the probability distributions show that both mod-
els’ predictions have low confidences. This can be seen in both the
distribution column summaries and by noticing that there is a high
KL-divergence score between the two models.

3.2 Matrix view

While the focus of the tabular view is detailed local information
about nodes, the matrix view provides a more global, aggregate
view of the models, highlighting areas where the two models agree
and disagree. The matrix view shows a confusion matrix for the
models’ predictions. As shown in Figure 3(a), each cell (i,j) in the
matrix shows the number of nodes whose predicted label is L; ac-
cording to Modell, and L; according to Model2. The main diagonal
in the matrix corresponds to cases where the two models agree on
their predictions, while the off-diagonal cells are the places where
they disagree. We use a heat map visualization of the counts to fur-
ther highlight the cell frequencies. The color of each cell ranges
from white to red, logarithmically according to the cell count, with
red indicating the highest frequency and white corresponding to the
lowest one. This view lets users quickly see the number of nodes
where the two models agree and disagree.

In addition to providing an overview of the commonalities and
differences between the predictions of the compared models, the
matrix view also supports selection and filtering. It allows users to
zoom into areas of interest by selecting a given cell of the matrix,
and inspecting the characteristics of the selected nodes further in
filtered tabular and network views.

For our citation network example, Figure 3(a) shows that the ma-
jority of publications falls along the main diagonal, indicating that,
for the most part, the two models agree on their predictions. For in-
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stance, the*“Neural Network” topic has the largest number of match-
ing predictions between the compared models, with a cell count of
774. Looking at places where the models disagree, we see that there
are 31 publications that are labeled “Neural Network” by Modell,
and “Theory” by Model2.

In cases where the ground truth is available for the underly-
ing data, the matrix view provides users with additional options
to compare the models to the ground truth. In addition, the ma-
trix view shows the models’ accuracy for a particular label. A
small histogram is introduced to each cell in the matrix, as shown
in Figure 3(b), with two vertical bars corresponding to the per-
centage of correct classification for each model. For example,
cell(Probabilistic Methods, Neural Networks) shows that Modell’s
accuracy is 20%, while Model2’s accuracy is 68%. This can be
interpreted as, among the 25 papers that Modell predicted to be
“Probabilistic Methods” and Model2 predicted to be “Neural Net-
works”, 5 papers are actually “Probabilistic Methods”, 17 are ”Neu-
ral Network” papers, and 3 papers were misclassified by both mod-
els and have neither topic. More subtly, users not only know that 17
papers were accurately classified by Model2, but also that Modell
misclassified them as having the topic “Probabilistic Methods”.
Sometimes understanding how a label is being predicted inaccu-
rately is important for understanding the weaknesses of a model.

3.3 Network View

While the previous two views provide useful micro (node-level) and
macro (aggregate-level) tools for comparing two models, an impor-
tant aspect that is missing is the ability to view and compare the
networks directly, especially the neighborhoods around nodes or a
collection of nodes of interest. G-PARE’s third view, the network
view, provides this capability. It shows the node-link diagram of
the underlying graph, and supports multiple types of network lay-
outs, such as the radial tree layout, the force-directed layout and
Fruchterman Reingold layout [13].

The novelty of the network view is the overlay of information
from the two models into a single view. Each node in the network
is represented as an ellipse, where different visual properties are
used to encode various features such as the most probable label,
the probability of the label, the divergence of the two models, and
the comparison with ground truth. As shown in Figure 4, every
node is split in half, with the left side corresponding to Modell and
the right side corresponding to Model2. The color of each node
half corresponds to the most probable label of the corresponding
model. This allows the user to quickly identify nodes where the
two models agree in their predicted label (same color), and the ones
where they disagree (two-tone). The ellipse eccentricity is used to
encode the divergence between the probability distributions of the
two models. The ratio by which the ellipse eccentricity correlates
with the KL-divergence is user-controllable through a slider in the

visual controls panel, as shown in Figure 5(b). G-PARE provides
users with multiple options to visualize the model’s confidence in
the predicted label. Figure 5(a) shows the different options users
has for encoding the confidence, including using a vertical bar, us-
ing a horizontal bar, and changing the intensity of the filled areas.
Finally, if ground truth is available, users can use the thickness
of the node borders to highlight the half-ellipses that correspond
with a model making a correct prediction. This helps users quickly
identify which nodes are correctly predicted by both models (solid
border highlight), which are correctly predicted by one (a two-tone
node with a half ellipse highlighted), and which are incorrectly pre-
dicted by both (an unhighlighted border, either solid or two-tone).

Network View
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Figure 4: The citation network shown in the network view.

In cases where the ground truth is known, the network view of G-
PARE provides users with additional capabilities for selecting nodes
based on the accuracy of the compared models. As shown in the
bottom of Figure 4, there is a 2x2 matrix that shows the counts
of nodes where both models’ predictions are correct, places where
both are incorrect, and places where one is correct and the other is
incorrect. The cells in the matrix are clickable, and will select the
corresponding nodes.

When nodes are selected, either through node selection on the
graph or the above mentioned mechanism, the network view also
includes an information panel that is used to display the attributes
of any selected set of nodes. In addition, when a set of nodes is



w»

Vertical Bar

e @& DD

Horizontal Bar Dithering Intensity

(a) Confidence control

o O» < [

Ratio=0 Ratio =0.5 Ratio =1

(b) Divergence ratio

Figure 5: Visual controls used for encoding confidence, divergence, and focus

selected, the rest of the network is dimmed to bring the focus to
the selected nodes. This helps users focus the analysis on specific
parts of the network, without losing the information about the posi-
tion and the connections of the target set with respect to the global
network. Similarly, users can control the percentage of dimming
through a dedicated visual control as illustrated in Figure 5(c).

In addition to the various filtering and highlighting options that
help users focus on areas of interest in the network, G-PARE also
utilizes the zoom and translation features provided by the underly-
ing prefuse toolkit [18] to provide users with means for exploring
the network without resorting to filtering. These features also help
users overcome the cluttering that can occur in visualizing dense
networks, by navigating through different parts of the graph. Paired
with the different network layouts supported by G-PARE, these ex-
ploration features allow users to gain different insights about the
comparison of the models in different regions of the graph.

Figure 6 illustrates an example from the citation network. Using
the visual encoding of the selected node, we can infer the following:

e Modell, corresponding to the left half-ellipse, predicts the pa-
per topic to be “Neural Networks” with a low probability.

e Model2 predicts the paper topic to be “Theory” with higher
probability.

e The divergence between the probability distributions of the
two models is high.

e The border-highlighting shows that Model?2 is making the cor-
rect prediction.

In addition, the selected paper’s attributes (true label and word oc-
currence) are listed as well.

3.4 Interaction

As is often the case with network visualization, viewing the entire
network helps provide an overview of the underlying data, but it is
not very informative for analytical tasks. At the global level, G-
PARE helps users navigate through the underlying data and models
to identify areas of interest by providing different levels of abstrac-
tion in each of the three described views. The full coordination
among the tabular, matrix, and network views allows the user’s se-
lection from any view to be applied as a filter on the remaining two.
This allows users to make a selection in one view (e.g., an entry in
the confusion matrix) and observe the selected set of nodes in an-
other view, which gives a more detailed view (e.g., the connection
pattern between the nodes corresponding to the confusion matrix
entry).

After the user has selected a set of nodes of interest using any of
the three views, the user can then filter these nodes out for further
analysis. By clicking on the filter button, a new window, with a new
set of views, is created over the selected nodes. Both the original
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Figure 6: lllustrative example showing a selected node, its predicted
label by the compared models, and the neighborhood around it.

selection and the new window show as different tabbed windows in
G-PARE. In the node-link diagram in the new window, the nodes
that were used to construct the view are shown with a shadow, so
that users can keep track of the original selections, as further explo-
ration is performed.

The network view provides additional functionality for expand-
ing the nodes shown in the node-link diagram. By clicking on the
“Expand” button in the network view, all the neighboring nodes
of the selected nodes (e.g., their ego-networks) are added to the
current set. On the other hand, clicking the “Expand All” button
adds the neighbors of all the nodes currently in the network, irre-
spective of them being selected, to the current view. This process
can be repeated, so, with enough expansions, starting from a single
node, users will be able to get the complete connected component in
which a node participates. More often in analysis, users will want
just the “1-hop” or “2-hop” neighbors of the nodes of interest.

As an example of filtering, in many cases the nodes of interest
are ones with the highest KL-divergence between the models’ dis-
tributions. By sorting the rows of the tabular view by divergence,
the top nodes can then be selected, filtered, and shown in a new win-
dow. Figure 7 shows the expanded ego networks of the two nodes
in the running example with the highest KL-divergence. By over-
laying the ground truth, we can observe the following: 1) For the
right node, we see that Model1’s prediction, based on paper content,



Figure 7: Afiltered view of the two nodes with the highest divergence.

indicates that the paper’s topic is “Genetic Algorithms.” However,
Model2, which takes relational structure into account, shows that
most of the citations to and from the paper are to “Theory” papers.
Based on this, Model2 predicts the paper’s topic to be “Theory,”
which is the correct topic, as shown by the border highlighting of
Model2’s prediction. 2) For the left node, the same signal from the
node’s neighbors causes Model2 to misclassify the paper’s topic as
“Theory.” In this case, the true topic is “Probabilistic Methods,” as
predicted by Modell. Intuitively, one can think that the signal the
left node is receiving from one neighbor should not be as strong
as the signal the right node is receiving from 5 neighbors. In fact,
Model? uses the percentage of neighbors with a given label, rather
than the actual count; a new model, which uses count might per-
form better. Thus, G-PARE is able to reveal some shortcomings
in the underlying models, which can then be taken into account in
interpreting the results or refining the model.

Another feature that G-PARE provides is the ability to follow a
given path through the network. This allows users to identify pat-
terns, detect cascades of errors, etc. Figure 8 shows an example of
utilizing the path-following feature in the bibliographic dataset. By
investigating the ego-network of paper 114189 in Figure 8(a), we
can see that the paper is misclassified as “Theory” by the relational
model since all the papers that it is connected to are “Theory” pa-
pers. However, by overlaying the ground truth, two of the three
neighbors of the paper are actually misclassified as well. In order
to identify the error source, we can then expand the top neighbor-
ing node to also include its ego-network. As shown in Figure 8(b),
G-PARE keeps track of the current path that the user is exploring by
highlighting the corresponding nodes and edges. By examining the
neighborhood of the newly expanded paper (31479), we observe
that 50% of its neighbors are misclassified as “Theory” papers as
well by the relational classifier. By hovering over paper 31479, we
can see that the true topic of the paper is “Probabilistic Models”,
similar to the true topic of paper 114189.

One thing we note here is that paper 31479 has 33% of its neigh-
bors correctly classified as “Probabilistic Models” papers by both
models, with higher probability than the misclassified neighbors.
Thus, we again hypothesize that if Model2 were to take the out-
put probability of the neighbors’ predictions into account, it would
have made a better prediction in that case. We can continue fol-
lowing the error cascade by expanding the neighborhood of paper
31479 further, as shown in Figure 8(c), until we reach the source of
the cascade to investigate the source of the error.

4 Use CASES

This section presents three use cases, highlighting different uses of
the tool.
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Figure 8: Following a cascade of errors

4.1 Communication network use case

In this use case, we apply G-PARE to the internal email commu-
nications of a former major energy company, the Enron Corpora-
tion. The email communications of the Enron Corporation were
released in 2003 as part of a Federal Energy Regulatory Commis-
sion (FERC) investigation into Enron accounting practices [22]. As
one of a few publicly available email communication datasets, the
dataset provides a unique glimpse into the interactions of different
types of individuals in a major organization. An important aspect
of these interactions is how indicative the content (i.e., their word
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Figure 9: Initial display for the communication network case study. The nodes represent email addresses, label indicates the title of the email
address user, and edges indicate communication exchanged between email addresses.

usage) and relationships (i.e., with whom they share emails) are of
an individual’s position (i.e., title) within the organization.

In this case study, we use a subset of the USC version of the
dataset [2] along with information from an internal Enron document
which lists the titles of individuals in the Enron Wholesale Group.
We merge multiple levels of the same general position (e.g., junior
specialist to specialist) and exclude titles which have less than 100
instances. In the network used in this study, nodes represent the
email addresses with known titles. Directed communication edges
are added between email addresses which have shared at least 5
communications. We also remove nodes which do not have at least
one communication edge. Next, word features are created from the
email communications sent between these email addresses which
(after stemming, stop word removal, and filtering based on fre-
quency). The final network consists of 1,402 email address nodes
with 9,523 communication edges, 7 possible titles (assistant, asso-
ciate, analyst, vice president, specialist, director, and manager), and
500 binary word indicators over the nodes.

Our use case compares two models for predicting the titles of the
participants. The first uses a state of the art classifier, support vec-
tor machines (SVM) [9], based on word usage. The second model
is a collective classification model which not only uses the content
of the emails, but also the titles of the individuals with whom they
share communications. We compare these models by splitting the
full network into two disjoint splits using snowball sampling, train-
ing both models on one split, and applying the learned models and
comparing the output on the other.

The initial display of G-PARE is shown in Figure 9. We begin
by first looking at the overview provided by G-PARE to describe
the network to which we applied our models. We can see that this
network consists of 699 nodes and 2680 edges, with an average de-
gree of 3.8. For the output of the models, we see that SVM has an
accuracy of 44.3% and the collective classification algorithm has
an accuracy of 45.6%. While this shows that both models improve
over a random baseline (which would have an accuracy of 14.3%),
it also shows there is room for improvement and a need to under-
stand why the incorrect predictions are occurring.
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Figure 10: Ego network of a highly connected individual in the net-
work, ‘Robert Ambrocik’, whose predicted labels seems to impact
many of the cases about which the models most disagree.

One possible cause can be seen when comparing the class distri-
butions found in the tabular view. We see that while the predicted
distributions of both models are generally consistent with the true
class distribution, both models do tend to incorrectly predict the
majority title, Specialists, more often than the number present in
the ground truth. We see this bias further in the matrix view where
the largest entry, 246 nodes, is for the set of nodes both models pre-
dicted as Specialist, 48% of which are incorrect. This observation
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Figure 11: An overview of G-PARE applied to the dolphin data.

implies that skew in the number of instances for each title is likely
to be affecting the quality of the models.

Focusing on where the models disagree, the matrix view shows
that most disagreements are about the titles of Director, Manager,
and Specialist. These disagreements imply that the characteristics
of people with these roles, in terms of word usage and relationships,
are likely very similar. Viewing the comparison of both models
to ground truth, we see a similar difficulty distinguishing between
Analysts and Associates. This implies that the features we are using
may be insufficient for our prediction task and that more complex
models (e.g., using bigrams, more complex notions of structural
equivalence) may be needed.

Aside from guiding us to possible ways to improve the mod-
els, the cases where both models disagree also highlight anomalous
individuals whose interactions may be of interest from a sociologi-
cal standpoint. For example, there is an individual, ‘Jerry Britain’,
whose word usage seems to indicate he is an Assistant while his
relationships correctly indicate he is a Specialist. The same can be
said of the ‘James Gilbert’, whose word usage indicates he is an
Associate while his relationships correctly shows he is a Director.
Comparing their word usage to others whose word usage correctly
indicates their position may provide insight into language differ-
ences across positions.

Finally, by sorting by the Divergence column, we notice an in-
teresting trend among the cases where the probability distributions
of the two models diverge. In the 12 most divergent cases, when
we view their ego networks, we see that all these nodes only have a
degree of one. More interestingly, of these, 10 share their edge with
the same individual, ‘Robert Ambrocik.” Filtering and viewing his
ego network, shown in Figure 10, we see that ‘Robert Ambrocik’
is a well connected individual in this network whose label has had
impact on many of the cases where the two models most disagree
(highlighted by the eccentricity of related nodes). This observation
not only provides further insight into the sensitivity of our collec-
tive model to node degree, but also shows the impact a prediction
on a single node can have on neighboring nodes.

4.2 Bottlenose dolphin use case

In this use case, we consider a network based on a long-term study
of a wild bottlenose dolphin population in Shark Bay, Australia
[27]. Scientists that study this bottlenose dolphin community have

found that behavioral differences exist across the sexes [14]. There-
fore, knowing the sex of the dolphin can be important for under-
standing different behaviors within the population. The sex of the
dolphin is determined by observation when possible, e.g., when a
dolphin leaps or swims on its back, and DNA sampling in some
cases. Because the number of dolphins monitored in this popula-
tion is large (over 1200), and some dolphins are not seen often, the
sex of 40% of the dolphins is unknown. Therefore, it is useful to in-
vestigate methods for predicting the sex of dolphins given previous
observational data about the dolphin population. To support this
task we use observed dolphin associations to build predictive mod-
els for inferring the sex of a dolphin. We focus on observational
surveys collected by the researchers.

In the dolphin network, dolphins are represented as nodes, and
edges exist between dolphins that have been observed together. In
our problem settings, the node labels represent the sex of the corre-
sponding dolphin. We begin our analysis by comparing two mod-
els, one that decides on a node label using the predicted labels of the
node’s neighbors (Modell - wwRN) and one that uses the predicted
labels of the neighbors having the same predominant observed loca-
tion (Model2 - wvRN-location). Figure 11 shows the initial display
in G-PARE. We see that the accuracy of the two models is very sim-
ilar, 79% and 80%, respectively. The matrix view shows us that the
models agree on the labels for 320 female and 303 male dolphins.

Using different filters, we can focus on the subset of nodes that
are mislabeled by both models. By further examination, we note
that the average degree among the filtered subset of nodes is 3.5,
which is significantly lower than the average degree of the full net-
work 20.5. This may indicate that there exist fewer observations for
these dolphins than other ones.

Given this new information, we generate new models (Model 3
- wvRN) and (Model 4 - wvRN-location) that train on data with
dolphins with at least 5 observations. We see that the accuracy of
both models improves to 83% and 82.8% respectively. We find
that Model3 misclassifies males and females at about the same rate,
while Model4 misclassifies females at a higher rate than males, indi-
cating that predominant location does impact the mislabeled nodes
(even though the overall accuracy is about the same). On further
investigation, many of the females that are being misclassified by
Model4 swim in different locations with different dolphins. There-
fore, using the predominant location does not help the prediction



accuracy for these dolphins. Without exploring the data, analysts
may incorrectly assume that location had no impact on the final
model. The ability to see the mislabeled nodes and their neighbor-
hoods gives the analyst insight into where different models perform
poorly and where they perform well.

4.3 Citation network use case

This case study considers a second citation dataset, gathered from
Citeseer, a search engine and digital library for scientific and aca-
demic papers. For our use case, we use a portion of the full Citeseer
network which contains 2,120 nodes, 3,757 edges, a 3703 word vo-
cabulary, and a label indicating the topic of a paper (i.e., Al, Agents,
DB, HCI, IR, ML).

In this use case, we look at the outputs of two common ap-
proaches for this document classification. The first (Modell - SVM)
uses only the document content and using a support vector ma-
chines (SVM) predicts the paper topic. The second (Model2 - Ma-
jority) uses the topic labels of the neighbors for prediction. In our
case study, we use a simple algorithm which repeatedly iterates over
the nodes of the network, labeling each unlabeled node with the
most common label among papers which it cites or is cited by (us-
ing labels observed or predicted in previous iterations), until all the
nodes are labeled.

Figure 12: Network view showing an overview of the Citeseer citation
network where nodes predicted by Modell correctly and by Model2 in-
correctly are highlighted. The overview shows large areas of misclas-
sification to the same label, a phenomenon referred to as flooding.

After loading the dataset, we first notice that both models per-
form well, with accuracies of 75% and 67% respectively. More
striking, however, is that while both models perform well, when
looking at the overview of class distributions and divergence in the
tabular view, we see that the predictions of both models have very
different characteristics. Selecting the option to display the ground
truth, we see that the overall class distribution of Model 1 is fairly
consistent with the ground truth but that Model 2 is heavily skewed
toward two topics, Agents and IR. We see the same in the network
view, show in Figure 12, with most of the network colored blue
and orange, corresponding to Agents and IR respectively. Of note,
however, is that the labels are not distributed evenly throughout the
network. Instead, we see large interconnected portions of the net-
work which are all predicted by Model?2 as the same label. We see
this phenomenon further when we filter on the cases where Modell
is correct but Model? is incorrect. As show in Figure 13, we find a
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Figure 13: A subnetwork of the Citeseer citation network which illus-
trates flooding. While Modell correctly predicts the node labels as
DB (shown in green), Model2 incorrectly predicts them as IR (shown
in orange).

connected component on 34 nodes which Model2 incorrectly pre-
dicts as IR (show in orange) and which Modell correctly predicts
as DB (shown in green). This result is consistent with a known
problem in relational models called flooding where incorrect neigh-
boring labels can cause cascades of errors [5]. By using G-PARE,
we are not only able to find a real world example of this little stud-
ied phenomenon, but we can also expand out from these cascades
to uncover the initial source of the misclassifications.

5 CONCLUSION AND FUTURE WORK

We have described G-PARE, a visual analytic system designed to
support users in comparing uncertain graphs. The visual compo-
nents of G-PARE combine elements from network and uncertainty
visualization, the most novel of which is the node visualization
which captures both comparison and uncertainty information. The
interactive components of G-PARE highlight the abilities to exam-
ine and compare models at the macroscopic (full graph), micro-
scopic (node in the graph) and mesoscopic (neighborhood around
a collection of nodes) level. While G-PARE was designed with
the goal of comparing the output of machine learning algorithms,
there are other settings (such as the comparison of the probabilistic
evaluations of experts) where comparing uncertain graphs makes
sense. There are a number of areas open for future research. One is
supporting richer uncertain graph models, such as uncertainty over
edges, as well as supporting unaligned graphs — here we assumed
that both uncertain graphs were over the same node set, so that the
node mapping was given. Additionally, we plan on investigating
coupling the tool with the underlying models, where the user is al-
lowed to provide feedback that is incorporated for enhancing the
models in real-time. Nonetheless, in this work, we believe we have
developed a unique tool that is well-suited to the analytic task of un-
derstanding differences and commonalities between node labeling
algorithms.
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