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ABSTRACT

Title of thesis: TOPIC MODELING FOR
WIKIPEDIA LINK DISAMBIGUATION

Bradley Alan Skaggs, Master of Science, 2011

Thesis directed by: Professor Lise Getoor
Department of Computer Science

Many articles in the online encyclopedia Wikipedia have hyperlinks to ambigu-

ous article titles. To improve the reader experience, any link to an ambiguous title

should be replaced with a link to one of the unambiguous meanings. We propose a

novel statistical topic model, which we refer to as the Link Text Topic Model (lttm),

that can suggest new link targets for existing ambiguous links in Wikipedia articles.

For evaluation, we develop a method for extracting ground truth from snapshots

of Wikipedia at different points in time. We evaluate lttm on this ground truth,

and demonstrate its superiority over existing link- and content-based approaches.

Finally, we build a web service that uses lttm to suggest unambiguous articles for

human editors wanting to fix ambiguous links.
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Chapter 1

Introduction

Wikipedia (wikipedia.org), the on-line, user-edited encyclopedia, is the sixth-

most frequently visited website on the Internet, seen by 14% of global Internet

users daily [3]. In total, Wikipedia has more than eight billion words in more than

19 million articles in more than 270 languages; the English language version of

Wikipedia by itself has over two billion words in over 3.8 million distinct articles

[38].

Wikipedia is the Internet’s largest wiki, a website where almost any visitor

may edit almost any article at almost any time. The MediaWiki software running

Wikipedia makes every previous version of each article available at any time, while

providing a standard view that defaults to the latest version of an article.

Any reader of Wikipedia can become an editor and make a change to an

article. The extensive content of Wikipedia is the result of the collaboration of

many millions of editors, some of whom contribute by writing complete articles,

others by fixing typographical and grammatical errors, and still others by flagging

non-neutral statements, identifying other stylistic issues, and correcting and refining

content. There are 3.5 million edits per month made to English Wikipedia [35].

Although some editors have made more than ten thousand edits each, more than

95% of editors to English Wikipedia have made fewer than one hundred edits. As
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of 2006, more than 30% of all edits were made by these least experienced editors [1,

20].

The breadth of coverage in Wikipedia, its diversity of contributors, and its

almost complete record of changes, have made it more than just a simple reference

encyclopedia; Medelyan et al. [22] give a thorough overview of the many efforts made

to apply the data in Wikipedia towards applications in natural language processing,

information retrieval, information extraction, and ontology building.

There is one perennial weakness in Wikipedia: the existence of hyperlinks to

ambiguous terms. For example, the “Organ” article is not a regular article. Since

both anatomical structures and musical instruments are commonly refered to by

that term, there are separate articles for these two meanings (as well as several

others). The “Organ” article itself is a disambiguation page, an article that contains

a list of links to possible meanings of the title. Thus, any link to the “Organ” article

should probably be corrected to link to one of these possible meanings.

If we could aid human editors in correcting these ambiguous links and pushing

the results back into Wikipedia, we would expect to improve the performance of

many of the ever-expanding collection of applications based on Wikipedia. The

Freebase Project (freebase.org) and DBpedia (dbpedia.org) are two examples of

semantic databases derived from data extracted from Wikipedia’s infoboxes, special

information boxes that editors maintain in many Wikipedia articles. Improving link

quality in Wikipedia should help these projects and many others.

In this thesis, we propose a novel statistical topic model, which we refer to as

the Link Text Topic Model (lttm), that can help aid human editors by suggest-
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ing new target articles for existing ambiguous links in Wikipedia articles. Before

describing this model, we first provide background information in three areas: the

creation of ambiguous links in the Wikipedia editing process, relevant related work

in word sense disambiguation, and a brief introduction to topic models and their

applications. We then describe our new topic model and our proposed inference

process. After that, we evaluate our technique alongside several other text- and

link-based disambiguation techniques (including tf–idf text similarity, Random Walk

with Restart, and Wikipedia Link Relatedness) on data derived from the history of

edits to Wikipedia. Finally, we describe our web-based disambiguation service to

aid Wikipedia editors, and propose future work.
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Chapter 2

Backround

2.1 Wikipedia

One main advantage an online encyclopedia like Wikipedia has over paper

encyclopedias is the abundance of relevant in-text hyperlinks between articles; the

Wikipedia Manual of Style suggests creating a link for the first instance of any word

or phrase that a reader is likely to also want to read, since these links aid readers

in the exploration of related topics [37]. Besides aiding readers, these links are also

the fodder for semantic extraction tools. MediaWiki wikitext, the markup language

in which Wikipedia articles are written, makes turning a word or phrase into a

hyperlink a trivial action; an editor simply adds a matched pair of double square

brackets around that word or phrase. For example, the following wikitext contains

a link to the “Organ” and “Human body” articles: “The kidney is an [[organ]]

in the [[human body]].”

When an editor adds a link in an article, the link should have a target article

that is about the topic being referenced. However, this is complicated by polysemous

words and phrases. Since an article title is how an article is referenced in a url,

the MediaWiki software that runs Wikipedia does not allow two or more articles to

share an identical title. For example, the article about anatomical organs and the

article about musical organs cannot both have the same title “Organ”. If multiple
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articles could justifiably have the same title, there is a set of standard practices the

Wikipedia community has to resolve title ambiguity. One option is for the article

associated with the primary or earliest meaning of the title to be given that title,

and any other articles be given different but still related titles. For example, the

title “Apple” is assigned to the article about the fruit, and the article about the

computer company has been given the title “Apple Inc.”. Another option is to add

a word or phrase in parentheses expressing the specific sense of the title at the end

of an ambiguous title. Following this model, the article about anatomical organs is

called “Organ (anatomy)”, and the article about the family of musical instruments

is called “Organ (music)”.

In cases where there is a clear dominant or root sense for the ambiguous ti-

tle in question, a special italicized hyperlink is added at the top of the article to

point either to other senses of the term (if there are only a few), or to a disam-

biguation page, a special article that lists the correct titles of articles that could be

associated with the ambiguous title, known as disambiguation candidates. In En-

glish Wikipedia, a disambiguation page usually has “(disambiguation)” in its title.

For example, in Figure 2.1, the primary “Apple” article about the fruit links to the

“Apple (disambiguation)” page, which links in turn to “Apple”, “Apple Inc.”, and

several other articles related the word “apple”. In the editions of Wikipedia in other

languages, an equivalent term to “disambiguation” in the appropriate language is

used.

In instances where there is no generally agreed upon dominant or root sense,

the disambiguation page itself is usually given the ambiguous title. Figure 2.2
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Apple

A typical apple
Scientific classification

Kingdom: Plantae
(unranked): Angiosperms
(unranked): Eudicots
(unranked): Rosids
Order: Rosales
Family: Rosaceae
Subfamily: Maloideae or Spiraeoideae [1]

Tribe: Maleae
Genus: Malus
Species: M. domestica

Binomial name
Malus domestica

Borkh.

This article is about the fruit. For the technology company, see Apple Inc.. For other uses, see
Apple (disambiguation).
"Apple tree" redirects here. For other uses, see Apple tree (disambiguation).

The apple is the pomaceous fruit of the apple tree,
species Malus domestica in the rose family
(Rosaceae). It is one of the most widely cultivated
tree fruits, and the most widely known of the many
members of genus Malus that are used by humans.
The tree originated in Western Asia, where its wild
ancestor, the Alma, is still found today. There are
more than 7,500 known cultivars of apples, resulting
in a range of desired characteristics. Cultivars vary in
their yield and the ultimate size of the tree, even
when grown on the same rootstock.[2]

At least 55 million tonnes of apples were grown
worldwide in 2005, with a value of about $10 billion.
China produced about 35% of this total.[3] The
United States is the second-leading producer, with
more than 7.5% of world production. Iran is third,
followed by Turkey, Russia, Italy and India.

Contents
1 Botanical information

1.1 Wild ancestors
1.2 Genome

2 History
3 Cultural aspects

3.1 Germanic paganism
3.2 Greek mythology
3.3 The Apple in the Garden of Eden

4 Apple cultivars
5 Apple production

5.1 Apple breeding
5.2 Apple rootstocks
5.3 Pollination
5.4 Maturation and harvest
5.5 Storage
5.6 Pests and diseases
5.7 Records

6 Commerce
7 Human consumption

7.1 Fallen apples
7.2 Apple allergy

Figure 2.1: The top of the “Apple” article at http: // en. wikipedia. org/ wiki/
Apple links to the “Apple (disambiguation)” page.

Look up organ in
Wiktionary, the free
dictionary.

Organ may refer to the following:
Organ (anatomy), a collection of tissues joined in structural
unit to serve a common function
Organ (music), a family of keyboard musical instruments characterized by sustained tone

Pipe organ, a musical instrument that produces sound when pressurized air is driven
through a series of pipes
Theatre organ, a pipe organ originally designed specifically for imitation of an orchestra
Electronic organ, an electronic keyboard instrument

Organs of state, branches of power within a government
division (business) within an organization; i.e. Organs of United Nations
Organ pipe coral, a marine organism native to the Indian and Pacific Oceans
Stenocereus thurberi, the organ pipe cactus plant
The Organ, an indie rock band
The Organ (newspaper), an underground newspaper published in San Francisco
Organ, Hautes-Pyrénées, a commune in France
Organ (magazine), a UK music magazine run by Organart
Organ (film), a 1996 Japanese film

This disambiguation page lists articles associated with the same title.
If an internal link led you here, you may wish to change the link to point directly to the intended article.

Figure 2.2: The “Organ” disambiguation page, with links to disambiguation candi-
dates, is available at http: // en. wikipedia. org/ wiki/ Organ .
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shows the “Organ” disambiguation page containing a short list of disambiguation

candidates of the word Organ: “Organ (anatomy)”, “Organ (music)”, and several

other senses.

These disambiguation pages are useful for users who reach pages directly by

typing into Wikipedia’s search box a word or phrase that happens to be ambiguous,

or by following a link from an external website. If the disambiguation page is

assigned the ambiguous title, the reader can view the disambiguation candidates

and pick the link to the article related to the meaning they intended. If, instead,

one of the meanings is assigned the ambiguous title, the reader clicks the link at the

top of the article to go to the disambiguation page and then clicks on the link to

their intended meaning.

As useful as disambiguation pages are for aiding in searching, articles should

not directly link to disambiguation pages in their text; it is almost always the case

that an editor intended a link to a disambiguation page to be a link to one of the

possible meanings of the phrase rather than the disambiguation page itself [36]. We

assume that the primary way these undesired links to disambiguation pages are

created is by an editor turning a word or phrase into a link, either after the original

text was added to Wikipedia, or in the process of writing the text. For example, if an

article about a musical band contained the word “organ”, an editor might turn that

into “[[organ]]”, expecting the “Organ” article to be about the musical instrument.

If the editor does not check to ensure that the linked article is not a disambiguation

page and that the contents match their intended meaning, this ambiguous link will

persist until corrected by another editor. To make a link with the same text as
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the original link, but that instead points to one of the unambiguous meanings, the

editor should have changed the link to be “[[Organ (music)|organ]]”; in wikitext,

the pipe character separates the link destination from the text of the link visible to

readers.

Due to the enormous breadth of coverage of Wikipedia, the English version had

more than 196,000 disambiguation pages in April 2011. Each of these pages contains

a notice that it is a disambiguation page and, if it follows the Wikipedia Manual of

Style properly, a list of disambiguation candidates. It is easy for an editor to acci-

dentally create a link to a disambiguation article rather than a more appropriate link

to one of the article’s disambiguation candidates; in September 2010 there were 442

disambiguation pages in the English version of Wikipedia that each had more than

100 incoming links. Figure 2.3, shows the full distribution of the number of inlinks

per disambiguation page. Since there are so many undesired links, an automated or

semi-automated disambiguation system would be very helpful to editors who work

on replacing these links to assist readers in moving quickly between relevant articles.

Helping these editors fix ambiguous links aids other projects that extract informa-

tion from Wikipedia. One example is Freebase, a web-based database derived from

Wikipedia and other sources [7]. It permits complex queries of semi-structured in-

formation extracted from Wikipedia articles, corresponding to questions such as

“What is the most populous city with a female mayor?” and “What British bands

have an organ player?” In this last example, if the Wikipedia article for a British

band with an organ player incorrectly linked to the “Organ” disambiguation page

rather than to the “Organ (music)” page, that band would be incorrectly omitted

8
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Figure 2.3: Distribution of number of inlinks per disambiguation page in English
Wikipedia

from the results of this last query. Besides Freebase, Wikipedia is a growing data set

for other natural language processing, artificial intelligence, and machine translation

systems [9], and replacing ambiguous links should also improve the quality of these

applications.

2.2 Word Sense Disambiguation

Wikipedia link disambiguation is related to the generic problem of word sense

disambiguation, the process of determining which of several potential meanings a

word has in a given context. These different meanings may be different parts of

speech, so natural language processing applications involving sentence parsing or

part-of-speech tagging need to address word sense disambiguation at some level.

In most applications involving word sense disambiguation, there is a strict

9



dichotomy between the topics uniquely identifying each document and the words

being disambiguated. In link disambiguation, however, the set of topics and the set

of link targets are the same.

The general word sense disambiguation problem has been studied for many

years, and Agirre and Edmonds [2] provide recent in-depth coverage of many as-

pects of word sense disambiguation, from knowledge-based methods to unsupervised

corpus-based methods, as well as the importance of word sense disambiguation to

such natural language processing applications as machine translation. State-of-

the-art word-sense-disambiguation techniques typically use the parts of speech and

identity of the surrounding words to perform disambiguation.

Link disambiguation is similar to word sense disambiguation because picking

the destination of an unambiguous link relates to picking the underlying meaning

of the linked phrase. However, our techniques incorporate the richer structure of

the link graph, rather than relying on just plain text. Most Wikipedia articles

have many links; with 102 million links in total, there were more than 22 links per

article on average in English Wikipedia in September 2010. There were 1.03 million

ambiguous links in all.

Mihalcea [23] is the first to apply general word sense disambiguation to Wikipedia.

Her system uses Wikipedia as a sense-tagged corpus and uses articles listed in dis-

ambiguation pages as classes for a naive Bayes classifier; the features used for each

word are the part of speech and local context of links to each disambiguation can-

didate. A manual map was created between WordNet senses and Wikipedia articles

for 51 words and used to evaluate the system against the senseval evaluations of

10



word sense disambiguation systems. The system showed a large improvement over

the baseline system.

The “Wikify!” system of Mihalcea and Csomai [24] takes this word-sense-

disambiguation system and applies it to the task of adding Wikipedia article hy-

perlinks to an existing text document, a process known as wikification. The system

compares several methods of candidate extraction and candidate ranking, the most

successful ranking algorithm being the ratio of the number of articles in which a

specific candidate word or phrase from the document appears as a hyperlink com-

pared to the number of article in which it appears regardless of status as a link or

not. Once a phrase is identified as a link, it is put through Mihalcea’s previous

disambiguation system.

Milne and Witten [26] take a different approach to disambiguation in their

wikification system. They use a concept of Wikipedia Link Relatedness based on

the amount of overlap of the sets of inlinking articles each disambiguation candidate

has with inlinks to the other articles linked in the source text; we will describe and

use this scoring system in Section 4.2.3.2.

2.3 Topic Modeling

Topic modeling is the process of describing documents in a text corpus in terms

of a small number of topics, which are probability distributions over words. It is

motivated by the problems associated with the extremely high dimensionality of the

standard document-vector bag-of-words model. With hundreds of thousands to mil-
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lions of words in a vocabulary, documents are treated as members of a huge vector

space. Applying standard document similarity techniques such as cosine similarity

to raw document-vectors can result in inadequate performance, since this approach

suffers both from complete separation of related concepts as well as confusing pol-

ysemous words.

Before probabilistic topic models became popular, Latent Semantic Analysis

(lsa) (also known as Latent Semantic Indexing (lsi)) was the dominant method of

performing useful dimensionality reduction [11]. In lsa, singular vector decomposi-

tion (svd) is performed on a term-document matrix X, yielding X = UΣV T , where

U and V are orthogonal matrices and Σ is a diagonal matrix. The k largest entries

in Σ correspond to the square roots of the non-zero eigenvalues of X∗X, and the

corresponding row vectors in U and V are the best k-dimensional approximations

of X under the Frobenius norm.

The probablistic model behind lsa is not immediately obvious. Probabilistic

Latent Semantic Analysis (plsa) was a first attempt at putting lsa into a proba-

bilistic framework [19]. In plsa, a document is treated as a mixture of underlying

topics. The topics are shared among all the documents, but in varying proportions.

Each document has its own mixture of topics. Figure 2.4 shows plsa using plate

notation.

One downside to plsa is that it is prone to overfitting, since the number of

parameters grows linearly with the number of documents. In addition, it is difficult

to evaluate the effectiveness of plsa at the core task of document modeling, because

it is impossible to assign a probability to a held-out document.
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Latent Dirichlet Allocation (lda) is a popular extension to plsa that solves

these shortcomings [6]. In lda, the plsa model is modified so that Dirichlet priors

are placed on the topic distributions as well as the per-document topic mixtures. lda

is a true probabilistic generative model for describing how a corpus of documents is

created, and its effectiveness for document modeling can be evaluated by measuring

the perplexity of held out documents. Figure 2.5 shows lda in plate notation.

There are several possible ways of inferring underlying topics in the lda model.

The original paper uses expectation maximization; other authors have used (col-

lapsed) variational inference for performing inference in a batch on a single machine

d z w

N

Nd

Figure 2.4: Plate diagram for Probabilistic Latent Semantic Analysis

α

β ϕ

θ z w

N

N

K

d

Figure 2.5: Plate diagram for Latent Dirichlet Allocation
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[31], distributed among many machines, as well as in a streaming environment [30].

We will briefly describe the implementation of a Gibbs sampler for performing topic

inference. See Heinrich [16] for a full exposition of the derivation.

In Gibbs sampling for lda inference, the topic assignments for each term in the

corpus are assigned at random to one of the K topics. Then, over several iterations,

the topic assignment for each term is resampled based on the topic assignments in

the current document and the count of topic assignments for that word over the

entire corpus. This is a simple algorithm to implement, and recent computational

improvements provide effective techniques to scale to thousands of topics or more

with minimal performance penalty [39].

Regardless of the choice of inference algorithm, it is not instantly clear how

to choose values for the hyperparameters α and β. Recent work has shown that in

many text corpora, it is sufficient to pick a symmetric β, but that asymmetry in α

does a reasonably good job of collecting stop words into a small number of topics,

as well as resulting in better perplexity for held out documents [34]. Wallach [33]

provides a straightforward algorithm for optimizing α and β by maximum likelihood

estimation between rounds of Gibbs sampling.

Another frequent question brought up in performing inference with the lda

model is that of choosing the best way to pick the number of topics K; practitioners

frequently pick K via cross-validation with held-out data. The Hierarchical Dirichlet

Process (hdp) is an alternative model that can be thought of as an extension to lda

with an infinite number of topics, a finitely many of which are actually used in the

corpus [32]. In hdp, the number of topics used is not specified in advance; at each
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stage of the inference process, the topic assignment for any word will likely reuse

previously used topics, but there is a small probability that it will be assigned to an

unused topic.

lda has been applied to modeling graphical data; specifically, Latent Dirichlet

Allocation for Graphs (lda-g) uses the lda generative model to describe how edges

are created between nodes in a graph [17]. In lda-g, a node is treated as a document,

and the outlinks are treated as the words of the document. By performing inference

on the model, latent groups in the graph can be discovered. This model has proved

useful to applications such as identifying researchers in different topic areas based

on a co-authorship graph [12].
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Chapter 3

Link Text Topic Model

We shall describe a novel topic model based on lda that provides a generative

model for both the links in an article and the text of the links. We call this model

the Link Text Topic Model (lttm).

3.1 Generative Model

Instead of using lda for modeling the words in an article, we will be modeling

the creation of links between articles; this model will prove useful in our disambigua-

tion task. As in lda, we assume that each article has associated with it a mixture

of shared topics drawn from a common Dirichlet distribution. However, instead of

each topic being a distribution over words as in lda, each topic in lttm is now a

distribution over articles. Furthermore, we stipulate that the text of each inlink to

a specific article is drawn from a link-target-specific multinomial distribution over

possible texts.

The generative story for lttm is similar to lda, and thus we will use similar

notation. First, a global number of topics K is picked, as well as a total number

of articles N and set of possible link texts of size V . Appropriate α, β, and γ

vectors are chosen as parameters for Dirichlet distributions; α is K-dimensional,

β is N -dimensional, and γ is V -dimensional. Following practical recommendations
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related to performing inference on the lda model, we will assume β and γ are

symmetric, but we will let α be asymmetric. Furthermore, it is straightforward to

place hyperpriors on these parameters, but in this exposition we will choose not to

do so.

The article distribution for each of the K topics is chosen from a Dirichlet

distribution parameterized by β. For each article r that is ever linked to, the dis-

tribution of possible link texts πr is chosen from a Dirichlet distribution over link

texts parameterized by γ.

To generate the links for an article d, we will pick an associated topic mixture

θ; as in lda, the mixture is chosen from a Dirichlet distribution parameterized by α.

Then, for each link, we pick the topic zi = k for the link from the topic mixture. We

then choose the target ai = r for the link from the corresponding topic ϕk. Finally,

we pick the text ti = l for the link from that target’s link-text distribution πr. The

identity of ai and ti is readily available for normal links, but we will assume that the

link topic zi, article specific topic mixture θ, and global topic distributions ϕk are

latent and must be inferred. We will use z′j, a′j, and t′j to refer to the jth ambiguous

link in an article.

For all links, the text of the link is visible. For links to regular pages, we

assume that the identity of the link is visible. However, we will assume that the

true targets of links that are to disambiguation pages are latent. Figure 3.1 has

the plate notation for this model, with the variables associated with the ambiguous

links denoted with a prime.

This model is similar to the lda-er model used for entity resolution [5]; how-
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Figure 3.1: Plate diagram for the Link Text Topic Model. A prime next to a
variable indicates it is used for ambiguous links.

ever, we assume that most link targets will be visible (rather than always latent as

in lda-er). Because of this, we do not use a noise model for the link text, and

instead use a multinomial with a Dirichlet prior. In addition, in our implementation

of posterior inference, we do not require the entire link structure to fit in memory, α

is no longer symmetric, we perform hyperparmeter estimation for α, β, and γ, and

we use a sampling improvement to scale easily to thousands of topics.

3.2 Posterior Inference

Given this model, it is possible to perform posterior inference to determine

highly probable values of the latent variables. We use a collapsed Gibbs sampler to

determine the values of z, z′, and a′. The values for θ, ϕ, and π are never explicitly
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sampled, but instead are integrated out.

We will use the notation nm,k,r,t to represent the number of times in document

m that topic k is used for a link to target article r with link text t, regardless as to

whether or not the link is ambiguous. In addition, if any subscript is replaced with

a “·”, then that subscript is being summed over. Finally, appending “ ;¬i” means

that the counts should not include the variables associated with link i in the corpus.

The value for topic zi associated with the link ai in position i in document m

is resampled proportional to:

p(zi = k|z⃗¬i, z⃗′, a⃗, a⃗′) =
n(m,k,·,·;¬i) + αk∑K

k′=1 n(m,k′,·,·;¬i) + αk′
·

n(·,k,r,·;¬i) + βr∑N
r′=1 n(·,k,r′,·;¬i) + βr′

(3.1)

∝ (n(m,k,·,·;¬i) + αk) ·
n(·,k,r,·;¬i) + βr∑N

r′=1 n(·,k,r′,·;¬i) + βr′
(3.2)

The value for topic z′j associated with ambiguous link a′j that currently has the value

r in position j in document m is resampled proportional to an almost identical value:

p(z′j = k|z⃗′¬j, z⃗, a⃗, a⃗′) =
n(m,k,·,·;¬j) + αk∑K

k′=1 n(m,k′,·,·;¬j) + αk′
·

n(·,k,r,·;¬j) + βr∑N
r′=1 n(·,k,r′,·;¬j) + βr′

(3.3)

∝ (n(m,k,·,·;¬j) + αk) ·
n(·,k,r,·;¬j) + βr∑N

r′=1 n(·,k,r′,·;¬j) + βr′
(3.4)

Finally, the target a′j of ambiguous link j is resampled proportional to:

p(a′j = l|z⃗′, z⃗, a⃗, a⃗′¬j, t⃗, t⃗′) =
n(·,k,r,·;¬j) + βr∑N

r′=1 n(·,k,r′,·;¬j) + βr′
·

n(·,·,r,t;¬j) + γt∑V
t′=1 n(·,·,r,t′;¬j) + γt′

(3.5)

∝ (n(·,k,r,·;¬j) + βr) ·
n(·,·,r,t;¬j) + γt∑V

t′=1 n(·,·,r,t′;¬j) + γt′
(3.6)
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Under the model as described, it is possible that any article may be chosen for

the link target a′ of an ambiguous link; however, most will have a very small prob-

ability of being picked. Since it seems unreasonable for a disambiguation approach

to suggest a target article that has never been associated with a given link text, we

will restrict our sampler to only choose values for a′j that have been used before in

some ai where t′j = ti; we will call this set of candidate values A′
j.

We have described our Gibbs sampler for sampling the topics and the links

separately; instead we could use block Gibbs sampling for the (z′j, a
′
j) variable pair

associated with each ambiguous link. However, by doing so, we would have to sample

from K · |Aj| values, where A′
j is the number of possible values for a′j. By instead

sampling each z′j and a′j separately, we only have to sample from K + |A′
j| values

per pair.

Finally, at the very end of this process, we do not actually care about the

values for z and z′; the only thing that matters for disambiguation is a′. Thus,

we will not actually be making final predictions for the topic assignments; we will

integrate them out and produce probability distributions over the possible article

targets.

Disambiguation with this model is easy; the disambiguation candidate chosen

for an ambiguous link is simply the most probable candidate. Furthurmore, we can

rank ambiguous links by our certainty in their disambiguated values by ranking

them according to the probability of their most likely candidate.
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Chapter 4

Alternate Disambiguation Techniques

We will compare lttm to seven other algorithms for disambiguation: two

simple baselines that predict popular link targets, three text-similarity approaches,

a graph-based random-walk approach, and a link-based approach. Before describing

the alternative aproaches, we explain how to identify disambiguation pages and

candidates.

4.1 Disambiguation Page Identification and Disambiguation Candidate

Extraction

All the algorithms we consider require us to automatically identify ambiguous

links and make a suggestion of a disambiguation candidate. Therefore, we need to

find all the disambiguation pages and extract the disambiguation candidates from

each page. Since the MediaWiki software has no special internal representation of

disambiguation pages, we must be aware of the Wikipedia community standards to

identify and extract the information we need.

In Wikipedia, the Manual of Style covers many aspects of article creation,

ranging from the proper use of dashes to general layout guidelines for various kinds

of articles. Specifically, there is a section dedicated to the layout of disambiguation

pages [37]. Importantly, the guide indicates the various templates that can be placed
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on a page to identify it as a disambiguation page. Thus, we can identify disambigua-

tion pages by going through all articles and finding those pages that contain these

templates.

The Wikipedia Manual of Style suggests that the various disambiguation can-

didates should be placed in a specially formatted list, ideally with only links to

disambiguation candidates in the list; links to any other articles should be avoided,

to make it easy for a reader to know what to click on in each line. For many pages,

this is a simple one-level list, but for some topics, such as “Java (disambiguation)”,

there is a complicated hierarchy (Figure 4.1). This hierarchy information potentially

could be used in a hierarchical classification system, but we currently flatten such a

list to treat all disambiguation candidates on equal footing.

The effectiveness of our algorithms rely on disambiguation pages following

these guidelines. We will ignore any links that do not appear in list form; making

suggestions to expand a disambiguation page would be an interesting problem in

and of itself. A simple review of 100 randomly chosen English disambiguation pages

shows that 93 had their disambiguation candidates appear all in list form; 7 had at

least one disambiguation candidate appear only elsewhere in the page, but not in a

list. However, 27 of the 100 had more than one link per line, with the extra links

often being very general (for example, country names or years) that should not be

treated as synonyms. Because of this, we consider the heuristic of treating all the

links in a single line of a list as potential targets as too overly inclusive to be used

effectively.

Instead of trying to derive possible candidates from disambiguation pages, we
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Look up java or Java in
Wiktionary, the free
dictionary.

Contents
1 Animals
2 Literature
3 Computer science
4 Consumables
5 Entertainment
6 Geography
7 Plants
8 Transportation

Java is the most populous island in Indonesia.

Java may also refer to:

Animals

Java Pipistrelle, Pipistrellus javanicus, a species of pipistrelle bat
Java shark, Carcharhinus amboinensis, also known as the pigeye
shark
Java Sparrow, Padda oryzivora, a popular cage-bird
Java (chicken), a rare breed that is one of the oldest American chickens

Literature

Java, seine Gestalt, Pflanzendecke, und sein innerer Bau (Images of
Light and Shadow from Java's interior) - a four volume treatise written by Dutch naturalist Franz
Wilhelm Junghuhn, and considered the first formal articulation of Pandeism

Computer science

Java (programming language), an object-oriented high-level programming language
Java (software platform), a technology developed by Sun Microsystems for machine-
independent software

Java Platform, Standard Edition, targets desktop environment
Java Platform, Enterprise Edition, targets server environment
Java Platform, Micro Edition, targets mobile devices and embedded systems
Java Card, targets smart cards and other small memory footprint devices
Java Development Kit (JDK), a software bundle from Sun Microsystems aimed at Java
developers
Java Virtual Machine (JVM), part of the Java Platform that interprets (or possibly translates)
Java bytecode

Java applet, allows software to run in web browers, and is accessible on most PCs
JavaScript, a web scripting language with no direct relationship to the Java platform

Consumables

Java (cigarette), a brand of Russian cigarettes
Java coffee, a variety of coffee grown on the island of Java, or American slang for coffee
Java, a brand of cachaça, a type of alcohol

Entertainment

Java (band), a French band
Java (dance), a Parisian Bal-musette dance

Figure 4.1: The first page of the “Java (disambiguation)” article shows grouped
disambiguation candidates. The whole list is viewable at http: // en. wikipedia.
org/ wiki/ Java_ ( disambiguation) .
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extract candidates from the text of links, which is both convenient and effective; if a

specific link text has been used to link to a page before, it is reasonable to consider

it as a potential link target in other contexts. For each link to an ambiguous page,

we will construct a list of all possible articles that are linked to with the same link

text; we will use this list as our disambiguation candidates.

4.2 Disambiguation Algorithms

4.2.1 Baseline

In a pattern classification problem with high class skew, a useful baseline is

always picking the most frequent class, regardless of the feature values of a specific

instance. In word sense disambiguation (see section 2.2), this is known as the most-

frequent sense baseline and is common in evaluating word sense disambiguation

techniques [14]. We will use two forms of this baseline; in the first we will predict

the disambiguation candidate with the most inlinks of any kind, and in the second

we will predict the disambiguation candidate with the most inlinks with the text

of the ambiguous link in question. These approaches take no other features into

consideration, so any useful disambiguation algorithm will hopefully perform better.

With link disambiguation, we see just such a class skew. Figure 4.2 demon-

strates how one of the musical senses of the text “organ” accounts for most of the

links. Thus, we use a most-common link baseline by comparing the number of links

from other articles to the different disambiguation candidates for an ambiguous link.

We simply pick the disambiguation candidate with the highest number of inlinks
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Figure 4.2: The distribution of inlinks with the text “organ” demonstrates the large
class skew that can arise in disambiguation; 40 articles with a single inlink are not
shown.
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with that text. For example, since “Organ (music)” had more inlinks than any page

linked with “organ”, all links to “Organ” with the text “organ” would be replaced

with links to “Organ (music)”.

However, it is important to note that the specific text used to link to a disam-

biguation page can alter the meaning. For example, Figure 4.3 shows that most links

with the text “organs” link to the anatomical sense rather than the musical sense;

thus, the text-specific most-frequent-class baseline would predict “Organ (anatomy)”

for any link with “organs” as the link text.

4.2.2 Text-Based Approaches

The first non-trivial approaches we consider involve the text of the articles,

but not explicitly the link structure.

4.2.2.1 Text Similarity

The first text-similarity technique we consider is Jaccard similarity on the

sets of words found in articles; looking only at the text of the articles in question

and not at the existence or frequency of any links, we pick the disambiguation

candidate that has the highest Jaccard similarity between the set of words present

in the candidate article page and the set of words in the source article. If W (d) is

the set of words in article d, and W (d′) is the set of words in article d′, then the

Jaccard similarity is defined as the cardinality of the intersection of the two word

sets divided by the cardinality of their union; simJaccard(d, d
′) = |W (d)∩W (d′)|

|W (d)∪W (d′)| . The
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Jaccard similarity ranges from zero, if the documents have no words in common, to

one, if the documents each contain the exact same set of words.1

A second text-similarity technique we consider is tf–idf similarity. In tf–idf

similarity, we look at the the cosine similarity of articles under a tf–idf weighting

scheme. We let tft,d be the term frequency of term t in article d, the number

of times term t appears in article d. We let dft be the document frequency of

term t, the number of articles in which term t appears; we further let N be the

total number of articles in Wikipedia. We then map each article d to a vector

ŵd = ⟨wt,d⟩ indexed by term t, where wt,d = (1 + log tft) · log N
dft

. To compare

articles d and d′, we calculate the cosine similarity between the two vectors ŵd

and ŵd′ , simtf–idf(ŵd, ŵd′) =
ŵd·ŵd′

∥ŵd∥∥ŵd′∥
. Using smart notation, this is the ltc.ltc

weighting scheme [21]. With this weighting, terms common to both articles that are

also present in many articles contribute less to the similarity than terms common to

both that are present in few other articles. There are other possible tf–idf weighting

schemes, but this was the most effective of the several we considered.

4.2.2.2 Latent Dirichlet Allocation

A third text-similarity technique we use is one based on lda similarity. We

assume that the text of Wikipedia articles is generated by a 100-topic lda model.

We use the Gensim framework [29] for doing the model inference, since it can be

done in a streaming fashion without fitting all the data in memory. Although other
1For this and other text-based approaches, we use Lucene’s StandardAnalyzer class for tok-

enization.
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packages can perform valuable hyperparameter estimation for α and β that has

demonstrated improvements in other applications of lda [34], we were unable to

find an implementation that could do the estimation and still work in a streaming

fashion, since we were limited to one standard desktop machine for our evaluation,

which would reasonably be available to a typical Wikipedia editor.

With each Wikipedia article represented as a probability distribution over top-

ics, we need some way to describe similarity between topic distributions associated

with each article. We will use Jensen-Shannon divergence to compare these distri-

butions; we will pick the disambiguation candidate for an ambiguous link that has

the smallest topic divergence with the linking article.

4.2.3 Link-Based Approaches

Due to the rich link structure of Wikipedia, it is reasonable to consider dis-

ambiguation techniques based just on the links between articles.

4.2.3.1 Random Walk with Restart

The first link-based disambiguation technique we consider is Random Walk

with Restart (rwr), also known as Personalized PageRank [4]. In this approach,

we rank disambiguation candidates by their probability of being visited in a modified

random walk on the Wikipedia link graph originating with the linking article, after

first removing the original link to the disambiguation page. Rather than always

following random outlinks as in a normal random walk, a random outlink is followed
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from a node with probability 1− α, and with probability α, the random walk returns

to the originating node and restarts a random walk. The effect is similar to that of

PageRank [8], but the rankings are dependent on the originating node.

A standard argument applies for showing that there is a unique stationary

distribution for this process. Let us assume that the originating article is identified

by index 0, and that there are v articles in total. We let P be the transition matrix

associated with a random walk without restart. This matrix is sparse; if there is

a link from article i to article j, and ni total distinct outgoing links from article

i, then Pij is equal to 1
ni

. If there is no link from i to j, Pij = 0. This is almost

a stochastic matrix; to ensure that all rows sum to 1, let Pi0 = 1 if there are no

outgoing links from i (that is, if ni = 0).

Matrix P is now stochastic, but it is not necessarily aperiodic. We follow the

PageRank example of creating a new matrix Q = (1 − α)P + αE, where Eij = 1

if j = 0, otherwise Eij = 0. Matrix E is stochastic since there is exactly one unity

entry in each row, the other entries being zero, so each row sums to one. Therefore,

Q is stochastic since it is the weighted average of two stochastic matrices. Since a

random walk can always jump back to the start node, any node that is reachable

from the start is strongly connected to it. Since the start node can jump back to

itself, any path starting at the start node can be lengthened by one, so the Q matrix

is aperiodic. If Q is also irreducible, there exists a unique solution to the equation

πTQ = πT , where πT is a distribution over the article representing the steady state

of the random walk, known as the stationary distribution. πT is the eigenvector of

Q associated with the eigenvalue of 1, and we calculate an approximation of this
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value using the Bookmark-Coloring Algorithm described by Berkin [4]. 2

We are not the first to apply PageRank-related algorithms to natural-language-

processing problems. TextRank is an algorithm for keyword extraction and text

summarization based on building a graph from the text of a document with edges

based on similarity metrics, and then ranking text nodes by their PageRank in this

graph [25]. LexRank is a similar technique, where sentences as graph nodes are

linked via undirected edges, weighted by cosine similarity of the text [13].

4.2.3.2 Link Relatedness

Another link-based disambiguation approach we consider is Wikipedia Link

Relatedness [26], which is based on Normalized Google Distance [10]. If A is the

set of links into article a, and B the set of links into b, and W the set of all Wikipedia

articles, define:

relatedness(a, b) =
log(max(|A|, |B|))− log(|A ∩B|)
log(|W |)− log(min(|A|, |B|))

Relatedness would be zero if articles a and b have identical source articles

linking in, and it would be infinite if there is no overlap between the two sets. One

problem with the approach in [26] is that they use a weighted average of the relat-

edness score between all the links in the source document and each disambiguation

candidate; if one of these scores is infinite, the average is thus infinite. As this
2Since δ(i) for start node i is the initial vector in Berkin’s approach, it no longer matters if the

matrix is actually irreducible; the value of any other connectivity classes besides the one containing
the start node will always be zero.

30



average appears motivated by the uncertainty of the links being used (since the

application was for wikification of completely unlinked text, rather than disam-

biguating existing links), we choose to simply take the smallest relatedness score

rather than an average.

To incorporate this link relatedness into a disambiguation algorithm, we take

the article and determine all outlinks, except to the ambiguous page in question.

Then, we find the disambiguation candidate article with the minimum relatedness

to any non-candidate article linked from the source article, plus the source article

itself.
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Chapter 5

Evaluation and Results

5.1 Evaluation

In order to use and evaluate the different disambiguation algorithms, we need

the text content and outlinks for each article in Wikipedia. Periodically, the Wiki-

media Foundation makes available for download xml snapshots of the contents of

the different language editions of Wikipedia (http://download.wikipedia.org). These

snapshots provide enough information to extract the data we need; they provide ba-

sic metadata about each article such as title and last modification date, in addition

to the wikitext content of each article.1

To determine ground truth, we find all links to disambiguation pages present

at one point in time in English Wikipedia that were later removed by human editors

and replaced with the same text but different targets. We identify disambiguation

pages by finding those pages that included a disambiguation template, as discussed

in Section 4.1.

To find our evaluation data, we identify all links to disambiguation pages in
1It is possible to import these snapshots into a private installation of MediaWiki to create

a mirror of Wikipedia. As part of this process, a list of links between pages is automatically
generated. However, this list of links makes no distinction between links directly included in the
wikitext of an article, and those links indirectly included via MediaWiki’s template expansion
mechanism. Since the links included via a template are duplicated for every page that includes
that template, and since these links are not visible to a user when they are editing the wikitext
for a page, we choose to ignore these links by extracting links directly from the source wikitext.
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the September 2010 snapshot of English Wikipedia; we then find links with identical

text but to a different target in the October 2010 snapshot. This results in 36,009

links, of which we pick 1,000 at random for our test set. We are thus only evaluating

disambiguations that keep the same visible text; if the text is altered, we are not

using it for evaluation. We do not take into account the location in the article or

the surrounding text of a link, so we consider a link to be unchanged if it is deleted

and a new one is added elsewhere in an article to the same target. To measure the

accuracy of the various disambiguation techniques, we use them to make predictions

for the new targets of the links based on data in the September snapshot; we consider

a correct prediction to be one that matches the new target of the link in the October

snapshot. Figure 5.1 is an example of an ambiguous link present in September that

was fixed by October.

The motivating assumption for this evaluation technique is that blatant errors

are not likely to persist in Wikipedia. The ease-of-editing at the heart of Wikipedia

does allow for malicious users to corrupt the content of articles, as well as permit

well-meaning users to mistakenly submit incorrect information. Priedhorsky et al.

[28] have classified the kinds of damage that takes place in Wikipedia and assessed

how long the damage persists. Using edit data and view logs, they estimate that

42% of all damaging edits to English Wikipedia are fixed on the next page view,

and roughly 70% are fixed within ten page views. If an erroneous edit is made, it is

likely to be corrected.
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5.2 Results

On our 1,000-link test set, the most-frequent-candidate baseline achieved 30.1%

accuracy, and the text-specific most-frequent-candidate baseline achieved 38.2% ac-

curacy. For text similarity, the Jaccard-similarity approach was 33.5% accurate, the

tf–idf approach was 38.5% accurate, and the lda approach was only 28.7% accurate.

September 2010
== Personnel ==
;John Mayall’s Bluesbreakers
* [[John Mayall]] - [[Singing|Lead vocals]], [[harmonica]],
[[piano]], [[harpsichord]], [[organ]], [[harmonium]],
[[guitar]]
* [[Mick Taylor]] - [[Lead guitar]], [[Hawaiian guitar]]
* Chris Mercer - [[Tenor saxophone|Tenor]], [[baritone
saxophone]]
* [[Dick Heckstall-Smith]] - Tenor, [[soprano saxophone]]
* [[Jon Hiseman]] - [[Drum kit|Drums]], [[percussion]]
* [[Henry Lowther]] - [[cornet]], [[violin]]
* [[Tony Reeves]] - [[string bass]], [[bass guitar]]

October 2010
== Personnel ==
;John Mayall’s Bluesbreakers
* [[John Mayall]] - [[Singing|Lead vocals]], [[harmonica]],
[[piano]], [[harpsichord]], [[organ (music)|organ]],
[[harmonium]], [[guitar]]
* [[Mick Taylor]] - [[Lead guitar]], [[Hawaiian guitar]]
* Chris Mercer - [[Tenor saxophone|Tenor]], [[baritone
saxophone]]
* [[Dick Heckstall-Smith]] - Tenor, [[soprano saxophone]]
* [[Jon Hiseman]] - [[Drum kit|Drums]], [[percussion]]
* [[Henry Lowther]] - [[cornet]], [[violin]]
* [[Tony Reeves]] - [[string bass]], [[bass guitar]]

Figure 5.1: An example disambiguation in English Wikipedia made between
September 2010 and October 2010 shows that a link in the “Bare Wires” article
has been disambiguated by an editor from “Organ” to “Organ (music)”.
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For link-based approaches, Random Walk with Restart was 53.2% accurate when

there was a restart probability of 0.3, and Link Relatedness was 47.0% accurate.

Finally, our novel lttm approach with 1,000 topics was 61.9% accurate, the best of

all approaches we considered. Figure 5.3 compares these results, which also demon-

strate the improved accuracy of each technique when we consider a correct answer

to be one in the top three suggestions.

We also analyzed the effect of altering the value for the α parameter in the ran-

dom walk algorithm; adjusting this parameter had only a small change in accuracy

over a wide range of values.

Since the scores produced by lttm are probabilities, they are directly compa-

rable across predictions; it is possible to say a specific link is more likely to have one

target than another link is to have a different target based on their relative scores.

We therefore considered ranking the chosen disambiguation candidates across all

1,000 links to see if any techniques were particularly good at the highest scores. As

can be seen in Figure 5.4, lttm was most effective at the highest scores. We see

a similar pattern when we further applied the lttm model to all possible disam-

biguated links, as shown in Figure 5.5.

In addition to the disambiguation predictions, performing inference on lttm

also produces each topic’s distribution over links. For example, Figure 5.6 shows the

highly probably links from four topics in the 1,000-topic lttm model of Wikipedia.
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Count Title Count Title

5635 Maryland 6005 Thailand
3427 Baltimore 2127 Bangkok
2561 United States 1314 Tambon
1188 Washington, D.C. 1290 Laos
1163 National Register of Historic Places 946 Amphoe
697 Baltimore County, Maryland 945 Muban
690 Montgomery County, Maryland 780 Population
668 Freeway 693 Thesaban tambon
659 Prince George’s County, Maryland 522 Burma
655 Anne Arundel County, Maryland 484 Bhumibol Adulyadej
655 Annapolis, Maryland 467 Thai language
645 Interstate Highway System 443 King Amphoe
612 U.S. state 442 Cambodia
598 Maryland House of Delegates 427 Chao Phraya River
541 Unincorporated area 411 Chulalongkorn
534 List of streets in Baltimore, Maryland 393 Chiang Mai Province
530 State highway 390 Thai people
490 Toll road 375 Thaksin Shinawatra
490 Interchange (road) 368 Chiang Mai
467 University of Maryland, College Park 355 Vientiane

3073 The Simpsons 3748 Greek mythology
947 List of recurring characters in The Simpsons 1660 Homer
907 Homer Simpson 1462 Zeus
720 Bart Simpson 1405 Ancient Greece
701 Futurama 1225 Apollo
658 Fox Broadcasting Company 1113 Greek language
552 Lisa Simpson 1080 Iliad
498 Marge Simpson 870 Odyssey
372 Matt Groening 864 Ancient Greek
352 Springfield (The Simpsons) 838 Athens
315 Mr. Burns 831 Dionysus
261 Nielsen ratings 826 Virgil
245 List of fictional locations in The Simpsons 823 Heracles
233 Ned Flanders 813 Troy
223 Simpson family 811 Trojan War
223 Krusty the Clown 802 Athena
217 List of recurring characters in Futurama 765 Ovid
216 List of media personalities in The Simpsons 734 Poseidon
207 The Simpsons Movie 710 Greece
206 IGN 697 Odysseus

Figure 5.6: Counts of high-frequency links in four sample topics from a 1,000-topic
lttm model of Wikipedia representing Maryland, Southeast Asia, The Simpsons
television show, and Greek mythology
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Chapter 6

Disambiguation Web Service Implementation

Building on the experimental effectiveness of the lttm results, we constructed

a web interface to aid Wikipedia editors in link disambiguation. We first created

a web server to host the various tools we need. We used the Sinatra micro-web

framework for the Ruby programming language to make it easy to both serve static

JavaScript files, as well as respond to dynamic requests for disambiguation sugges-

tions. We used the JRuby implementation of the Ruby programming language and

the Hadoop Distributed File System for storage of our data. By building on Java-

based technology, the system is able to run unchanged on a variety of operating

systems.

We started with the xml database dumps available from the Wikimedia Foun-

dation. We downloaded the latest xml file for English Wikipedia. We then processed

the xml to add page metadata and article text to our database. We also processed

every article to extract the links to other articles contained in the wikitext. We

then performed inference on the links and their text using the lttm model; we

saved the topic distributions and the link text distributions for performing inference

to disambiguate links on demand.

“Navigation Popups” is a pre-existing JavaScript addon to Wikipedia that

provides several additions to the standard Wikipedia web interface. First, it provides
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Figure 6.1: When a user visits a Wikipedia page, the browser receives the text and
extracts the links, sending them to the disambiguation server. The server returns
the ambiguous links, which the browser then highlights.

a short summary of the target page when a reader’s mouse pointer hovers over a

link. Second, it provides rudimentary disambiguation capabilities. By hovering over

an ambiguous link, the user may disambiguate it by clicking on one of the options in

the displayed set of disambiguation candidates. This list is automatically extracted

from the disambiguation page, and no recommendation is made. Also, there is no

visual indication that a link is ambiguous until the reader’s mouse pointer is hovering

over it.

We extended Navigation Popups in two ways: first, we provide visual highlights

to indicate to the user the presence of ambiguous links; second, we calculate the

lttm probabilites for the true destination of ambiguous links and return the highest-

scoring disambiguation candidates by these probabilities.

40



Figure 6.2: Visiting the “Politeia (think tank)” page indicates that there is one
ambiguous link on the page.

Figure 6.3: The changed color and border of this link indicates that it is ambiguous,
and needs to be corrected.

Figure 6.4: When an ambiguous link is hovered over with the mouse, a set of
disambiguation candidates appears, ranked by probability under the lttm model.
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Figure 6.5: Choosing one of the disambiguation candidates automatically creates
the edit and edit summary for the change.
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Figure 6.6: When the user’s mouse hovers over an ambiguous link, the link is
sent to Wikipedia to get the disambiguation candidates. They are displayed in the
browser, and the link is sent to the disambiguation server, which scores suggestions
and returns the scores to the browser, where they are displayed. The user clicks on
a disambiguation candidate, and the changed text is sent to Wikipedia to be stored.

Figure 6.3 demonstrates the highlighting process. To use our extended popups,

a user adds a few lines of JavaScript to their Wikipedia JavaScript user page. From

then on, whenever the user visits a Wikipedia page, their browser loads and executes

a script from our server, making a list of the links on the page, and sends it via an

ajax request to our server for analysis. The server queries the database to see if

any are ambiguous, and the identity of any ambiguous links is returned to the user’s

browser. Then, the browser goes through the links and highlights the ambiguous

ones in yellow, as well as providing the user with a count of ambiguous links at the

top of the article. An example is illustrated in Figures 6.2 and 6.3.

Figures 6.4, 6.5, and 6.6 illustrate how a user changes an ambiguous link. The
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highlights make it easy for a user to see ambiguous links on the page. The user then

points their mouse at one such link, and another ajax request is sent to our server

with the list of other links on the page. Our server then performs inference on just

the article in question using cached statistics from the other articles. This allows

us to work with older copies of the pages for building the initial model, but then

use the latest copy of the page being edited in case links have been changed. The

distribution over disambiguation candidates is calculated and sent back to the user’s

browser, where the most likely candidates are displayed in the popup for the user

to choose from; the links are listed with the highest-probability links first. When a

choice is clicked, the edit is immediately processed and saved by Wikipedia.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

Our evaluation technique of mining previous edits to Wikipedia avoids having

humans manually assess several hundred disambiguation predictions, as has been

done in previous work [26]. Instead, we leverage the work that has already been done

by the many Wikipedia editors who have undertaken the manual disambiguation of

links, and we can evaluate many thousands of disambiguation predictions without

any further human interaction.

Semi-automated disambiguation is a promising approach to tackling the huge

number of ambiguous links in Wikipedia. By building a system that incorporates

the text and link structure of the rest of Wikipedia, we can be effective at improving

this data source, to ultimately improve any application that uses it.

7.2 Future Work

The structure of the lttm model lends itself to modification. We see in

the graphical model a structural component identical to lda. Thus, it should be

straightforward to replace that component with another topic model, such as the Hi-

erarchical Dirichlet Process [32] which dynamically chooses an appropriate number
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of topics. In addition, this non-parametric Bayesian model makes model selection

easier. We hope to investigate such changes in the future.

There are several improvements to consider. One is to try new text simi-

larity scores to see if they provide better results. Another approach would be to

train a per-disambiguation-page classification algorithm such as a support vector

machine, where the features are the words or links already existing on a page. For

an individual disambiguation page with disambiguation candidates that have many

inlinks, there may be enough data to train a support vector machine to predict the

disambiguation candidate for a link from a given article. Furthermore, it would be

possible to combine the scores from all the algorithms we considered into one score

using a ranking support vector machine [18].

We would like to compare the effectiveness of these approaches on different

language editions of Wikipedia. There may be different factors that affect how they

perform: link density and article length are two examples. Also, we would like to

incorporate the link structure of one language edition of Wikipedia when making

disambiguation decisions for another language. At the word level, this kind of cross-

language approach has been shown to be effective in word sense disambiguation

[15]. Beyond additional link information, we could extend our lttm approach by

modeling the creation of the non-linked words at the same time as the links.

We do not take into account any features of the edits themselves in our al-

gorithms; it may be that registered users do a better job of creating correct links,

and perhaps experienced editors even more so. If true, we could take advantage of

this link quality by modifying lttm to incorporate the editor who added the link

46



as a visible variable that affects either the topic or a probability that a visible link

is actually wrong. Also, the amount of time a link has lasted in an article is a good

proxy for validity, as previous experiments have shown with vandalism [27].

Harnessing the edits of Wikipedia users in evaluating algorithms in natural

language processing may prove fruitful in many areas. First, the effectiveness of

the aggregate “wisdom of crowds” needs to be validated against standard metrics of

inter-annotator agreement. Previous work on Wikipedia disambiguation techniques

has used human judges to determine accuracy. One project used Amazon Mechanical

Turk for the evaluation [26]; users from around the world were paid to assess 449

links in 50 documents. To apply that evaluation for the techniques we discuss

here, a subset of the links disambiguated in our tests could be given to humans to

manually disambiguate, and then compare the results. Or, we could boldy commit

the suggestions to Wikipedia, and observe which of them are corrected.
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