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1 Introduction

Knowledge bases (KB) constructed through information extraction from text play an important role in
query answering and reasoning. Since automatic extraction methods yield results of varying quality,
typically, only high-confidence extractions are retained, which ensures precision at the expense of
recall. Consequently, the noisy extractions are prone to propagating false negatives when used for
further reasoning. However, in many problems, empirical observations of entities, or observational
data, are readily available, potentially recovering information when fused with noisy extractions. For
reasoning tasks where both empirical observations and extractions can be obtained, an open and
critical problem is designing methods that exploit both modes of identification.

In this work, we study a particular reasoning task, the problem of discovering causal relationships
between entities, known as causal discovery. There are two contrasting types of approaches to
discovering causal knowledge. One approach attempts to identify causal relationships from text
using automatic extraction techniques, while the other approach infers causation from observational
data. For example, prior extraction-based approaches have mined causal links such as regulatory
relationships among genes directly from scientific text [9, 12]. However, the extracted links often
miss complex and longer-range patterns that require observational data. On the other hand, given
observations alone, extensive work has studied the problem of inferring a network of cause-and-effect
relationships among variables [13, 2]. Observational data such as gene expression measurements are
used to infer causal relationships such as gene regulation [7]. Prior approaches use constraints to
find valid causal orientations from observational data [5, 6, 7, 13, 4]. Although the constraints offer
attractive soundness guarantees, the need for observed measurements of variables remains costly and
prohibitive when experimental data is unpublished. Extractions such as interactions between genes
mined directly from text provide a coarse approximation of unseen observational data. Combining
extractions mined from KBs with observed measurements where available to for causal discovery can
alleviate the cost of obtaining experiment-based data.

We propose an approach for fusing noisy extractions with observational data to discover causal
knowledge. We introduce CAUSFUSE, a probabilistic model over causal relationships that combines
commonly used constraints over observational data with extractions obtained from a KB. CAUS-
FUSE uses the probabilistic soft logic (PSL) modeling framework to express causal constraints in a
natural logical syntax that flexibly incorporates both observational and KB modes of evidence. As
our main contributions:

1. We introduce the novel problem of combining noisy extractions from a KB with observa-
tional data.
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2. We propose a principled approach that uses well-studied causal discovery constraints to
recover long-range patterns and consistent predictions, while cheaply acquired extractions
provide a proxy for unseen observations.

3. We apply our method gene regulatory networks and show the promise of exploiting KB
signals in causal discovery, suggesting a critical, new area of research.

We compare CAUSFUSE with a conventional logic-based approach that uses only observational
data to perform causal discovery. We evaluate both methods on transcriptional regulatory networks
of yeast. Our results validate two strengths of our approach: 1) CAUSFUSE achieves comparable
performance with the well-studied conventional method, suggesting that noisy extractions are useful
approximations for unseen empirical evidence; and 2) global logical constraints over observational
data enforce consistency across predictions and bolster CAUSFUSE to perform on par with the
competing method. The results suggest promising new directions for integrating knowledge bases in
causal reasoning, potentially mitigating the need for expensive observational data.

2 Background on Logical Causal Discovery

The inputs to traditional causal discovery methods are m independent observations of n variables
V. The problem of causal discovery is to infer a directed acyclic graph (DAG) G∗ = (V,E) such
that each edge Eij ∈ E corresponds to Vi being a direct cause of Vj , where changing the value of Vi
always changes the value of Vj .

Since graphical model G∗ encodes conditional independences among V, causal discovery algorithms
exploit the mapping between observed independences in the data and paths in G∗ to specify constraints
on the output. The PC algorithm [13] is a canonical such method that performs independence tests on
the observations to rule out invalid causal edges. Constraints over causal graph structure can also
be encoded with logic [5, 6, 7]. In a logical causal discovery system, independence relations are
represented as logical atoms. Logical atoms consist of a predicate symbol pi(·) with i variable or
constant arguments and take boolean or continuous truth values. To avoid confusion with logical
variables, for the remainder of this paper, we refer to V ∈ V as vertices. As inputs to logical causal
discovery, we require the following predicates to represent the outcomes of independence tests among
V:

– DEP(A,B), INDEP(A,B) refers to statistical (in)dependence between vertices VA and VB
as measured by the independence test VA ⊥⊥ VB . The conditioning set is the empty set.

– CONDDEP(A,B, S), CONDINDEP(A,B, S) corresponds to statistical (in)dependence be-
tween vertices VA and VB when conditioned on set S ⊂ V \ {VA, VB}. The independence
test VA ⊥⊥ VB |S is performed.

The outputs are of a logical causal discovery system are represented by the following target predicates:

– CAUSES(A,B) refers to the absence or presence of a causal edge between VA and VB , and
is substituted with all pairs of vertices A,B ∈ V. Finding truth value assignments to these
atoms is the goal of causal discovery.

– ANCESTOR(A,B) corresponds to the absence or presence of an ancestral edge between all
vertices VA and VB , where VA is an ancestor of VB if there is a directed causal path from
VA to VB . We may additionally infer the truth values of ancestral atoms jointly with causal
atoms.

Given the independence tests over V as input, the goal of logical causal discovery is to find consistent
assignments to the causal and ancestral output atoms.

3 Using Extractions in Causal Discovery

In the problem of fusing noisy extractions with causal discovery, in addition to the observations, we
are given a set of variables K = {K11 . . .Knn} of evidence from knowledge base (KB) K, where
Kij is an affinity score of the interaction between Vi and Vj based on text extraction.
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Extending previous logical causal discovery methods, we additionally represent K in the predicate
set with TEXTADJ(A,B). TEXTADJ(A,B) corresponds to KAB and denotes the absence or pres-
ence of an undirected edge, or adjacency, between VA and VB as extracted from text. Evidence of
adjacencies is critical to inference of CAUSES(A,B). However, adjacencies in standard causal dis-
covery are inferred from statistical tests alone. In our approach, we replace statistical adjacencies with
TEXTADJ(A,B). The goal of fusing KB evidence in logical causal discovery is to find maximally
satisfying assignments to the unknown causal atoms based on constraints over both independence
and text-based signals. In section 4, we present a probabilistic logic approach defining constraints
using statistical and KB evidence.

4 A Probabilistic Approach to Inferring Causal Knowledge

Our approach uses probabilistic soft logic (PSL) [1] to encode constraints for causal discovery. A
key advantage of PSL is exact and efficient MAP inference for finding most probable assignments.
We first review PSL and then present our novel encoding constraints that combine statistical and KB
information.

4.1 Probabilistic Soft Logic

PSL is a probabilistic programming framework where random variables are represented as logical
atoms and dependencies between them are encoded via rules in first-order logic. Logical atoms in
PSL take continuous values and logical satisfaction of the rule is computed using the Lukasiewicz
relaxation of Boolean logic. This relaxation into continuous space allows MAP inference to be
formulated as a convex optimization problem that can be solved efficiently.

Given continuous evidence variables X and unobserved variables Y, PSL defines the following
Markov network, called a hinge-loss Markov random field (HL-MRF), over continuous assignments
to Y:

P (Y = y|X = x) =
1

Z
exp

(
−

M∑
r=1

wrφr(y,x)
)

, (1)

where Z is a normalization constant, and φr(y,x) = (max{lr(y,x), 0}) is an efficient-to-optimize
hinge-loss feature function that scores configurations of assignments to X and Y as a linear function
lr of the variable assignments.

An HL-MRF is defined by PSL modelM = {(R1, w1) . . . (Rm, wm)}, a set of m weighted disjunc-
tions, or rules, where wi is the weight of i-th rule. Rules consist of logical atoms and are called
ground rules if only constants appear in the atoms. To obtain the HL-MRF, we first substitute logical
variables appearing inM with constants from observations, producing M ground rules. We observe
truth values ∈ [0, 1] for a subset of the ground atoms, X and infer values for the remaining unobserved
ground atoms, Y. The ground rules and their corresponding weights map to φr and wr. To derive
φr(y,x), the Lukasiewicz relaxation is applied to each ground rule to derive a hinge penalty function
over y for violating the rule. Thus, MAP inference minimizes the weighted rule penalties to find the
minimally violating joint assignment for all the unobserved variables:

arg min
y∈[0,1]n

m∑
r=1

wr max{lr(y,x), 0}

PSL uses the consensus based ADMM algorithm to perform exact MAP inference.

4.2 CAUSFUSE

CAUSFUSE extends constraints introduced by the PC algorithm [13]. Whereas PC infers adjacencies
from conditional independence tests, CAUSFUSE uses text-based adjacency evidence in all causal
constraints. The text-based adjacency evidence bridges domain-knowledge contained in KBs with
statistical tests that propagate causal information.

Figure 1 shows all the rules used in CAUSFUSE. The first set of rules follow directly from the
three constraints introduced by PC. We additionally introduce joint rules to induce dependencies
between ancestral and causal structures to propagate consistent predictions. We describe below how
CAUSFUSE rules upgrade PC to combine KB and statistical signals for causal discovery.
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Figure 1: PSL rules for combining statistical tests and KB evidence in causal discovery.
Rule Type Rules

PC-inspired Rules C1) ¬TEXTADJ(A,B)→ ¬CAUSES(A,B)
C2) CAUSES(A,B)→ ¬CAUSES(B,A)
C3) TEXTADJ(A,B) ∧ TEXTADJ(C,B) ∧ ¬TEXTADJ(A,C) ∧ CONDDEP(A,C, S) ∧ INSET(B,S) →
CAUSES(A,B)
C4) TEXTADJ(A,B) ∧ TEXTADJ(C,B) ∧ ¬TEXTADJ(A,C) ∧ CONDDEP(A,C, S) ∧ INSET(B,S) →
CAUSES(C,B)
C5) CAUSES(A,B) ∧ DEP(A,C) ∧ CONDINDEP(A,C, S) ∧ INSET(B,S) ∧ TEXTADJ(B,C) →
CAUSES(B,C)
C6) CAUSES(A,B) ∧ CAUSES(B,C) ∧ TEXTADJ(A,C)→ CAUSES(A,C)

Joint Rules J1) CAUSES(A,B)→ ANC(A,B)
J2) ¬ANC(A,B)→ ¬CAUSES(A,B)
J3) ANC(A,B) ∧ ANC(B,C)→ ANC(A,C)
J4) ANC(A,B) ∧ TEXTADJ(A,B)→ CAUSES(A,B)
J5) TEXTADJ(A,B) ∧ TEXTADJ(B,C) ∧ DEP(A,C) ∧ CONDINDEP(A,C, S) ∧ INSET(B,S) ∧
CAUSES(B,A) ∧ ¬ANC(C,A)→ CAUSES(B,C)

PC-inspired Rules PC uses conditional (in)dependence and adjacency to rule out violating causal
orientations. However, in CAUSFUSE, all adjacencies are directly mined from a KB. Rule C1
discourages causal edges between vertices that are not adjacent based on evidence in text. Rule C2
penalizes simple cycles between two vertices. Rules C3 and C4 capture the first PC rule and orient
chain Vi − Vj − Vk as Vi → Vj ← Vk, a v-structure, based on independence criteria. Rule C5 orients
path Vi → Vj − Vk as Vi → Vj → Vk to avoid orienting additional v-structures. Rule C6 maps to the
third PC rule, and if Vi → Vj → Vk and Vi − Vk, orients Vi → Vk to avoid a cycle. PC applies these
rules iteratively to fix edges whereas in CAUSFUSE, the rules induce dependencies between causal
edges to encourage parsimonious joint inferences.

Joint Rules Joint rules encourage consistency across ancestral and causal predictions through
constraints such as transitivity that follow from basic definitions. Rule J1 encodes that causal
edges are also ancestral by definition and rule J2 is the contrapositive that penalizes causal edges to
non-descendants. Rule J3 encodes transitivity of ancestral edges, encouraging consistency across
predictions. Rule J4 infers causal edges between probable ancestral edges that are adjacent based on
textual evidence. Rule J5 orients chain Vi − Vj − Vk as a diverging path Vi ← Vj → Vk when Vk
is not likely an ancestor of Vi. Joint rules give preference to predicted structures that respect both
ancestral and causal graphs.

In our evaluation, we investigate the implications of using a noisy extraction-based proxy for adjacency
and the benefits of joint modeling.

5 Experimental Evaluation

Our experiments investigate the two main claims of our approach:

1. We study whether the noisy extractions are a suitable proxy for latent adjacencies and give
similar performance to a conventional logic-based approach that impute adjacency values
using only observations.

2. We understand the role of joint ancestral and causal rules over observational data in mitigat-
ing noise from the extraction-based evidence.

We evaluate CAUSFUSE on real-world gene regulatory networks in yeast. We compare against CAU-
SOBS, the PSL model variant that performs prototypical causal discovery using only observational
data. CAUSOBS replaces TEXTADJ with STANDARDADJ, adjacencies computed from conditional
independence tests.

5.1 Data

Our dataset for evaluation consists of a transcriptional regulatory network across 300 genes in yeast
with simulated gene expression from the DREAM4 challenge [8, 10]. We snowball sample 10 smaller
subnetworks of sizes 20 with low Jaccard overlap to perform cross validation. The data contains
210 gene expression measurements simulated from differential equation models of the system. We
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perform independence tests on the real-valued measurements which are known to contribute numerous
spurious correlations. In addition to the gene expression data, we model domain knowledge based on
undirected protein-protein interaction (PPI) edges extracted from the Yeast Genome Database:

ANC(A,B) ∧ LOCALPPI(A,B)→ CAUSES(A,B)

We obtain text-based affinity scores of interaction between pairs of yeast genes from the STRING
database. STRING finds mentions of gene or protein names across millions of scientific articles and
computes the co-occurrence of mentions between genes. As an additional step, STRING extracts
relations between genes and increases the affinity score if genes are connected by salient terms such
as “binds to” or “phosphorylates.”

5.2 Results

Model Variant F1

CAUSFUSE 0.19 ± 0.08
CAUSOBS 0.20 ± 0.05

CAUSFUSES-PC 0.17 ± 0.07
CAUSOBS-PC 0.19 ± 0.05

Table 1: CAUSFUSE achieves comparable performance with CAUSOBS, suggesting that noisy
extractions can approximate unseen adjacencies. Without joint rules, CAUSFUSES-PC shows worse
performance, pointing to the benefit of sophisticated joint modeling in mitigating noisy extractions.

We evaluate CAUSFUSE and CAUSOBS using 10-fold cross validation on DREAM4 networks.
CAUSOBS uses the same rules as our approach but computes STANDARDADJ as ground DEP(A,B)
atoms that never appear in groundings of CONDINDEP(A,B, S), based on definition.

To evaluate the additional benefit of joint rules, we compare sub-models of CAUSFUSE and CAU-
SOBS run with causal orientation rules only, denoted CAUSFUSES-PC and CAUSOBS-PC respec-
tively. Table 1 shows average F1 scores of all model variants for the regulatory network prediction
task on DREAM4.

Noisy Extractions Maintain Performance First, we see comparable performance between CAUS-
FUSE and CAUSOBS, answering our first experimental question on how closely noisy extractions
approximate adjacencies. In table 1, there is no statistically significant difference between the
F1 scores of CAUSFUSE and CAUSOBS. The comparable performance between CAUSFUSE and
CAUSOBSsuggests that the noisy extractions can substitute observational data computations without
significantly degrading performance.

Joint Rules Overcome Noise Our investigation into model variants sheds light on the second
experimental question around how logical rules overcome the noise from extractions. When compar-
ing PC-only variants of each method, CAUSOBS-PC gains over CAUSFUSES-PC, suggesting that
sophisticated joint rules are needed to mitigate the noise from KB extractions. The consistency across
predictions encouraged by the joint rules bolsters the extraction-based adjacency signal.

Extractions Yield Higher Precision, Lower Recall To further investigate the extraction evidence
mined from STRING, we compare both STANDARDADJ and TEXTADJ against gold-standard adja-
cencies, which we obtain from undirected regulatory links. Table 2 shows the average precision and

Adjacency Precision Recall
TEXTADJ 0.32 0.11
STANDARDADJ 0.27 0.3

Table 2: Extraction-based adjacencies achieve higher-precision but lower recall, further substantiating
need for joint rules in recovering missing causal orientations.
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recall of each adjacency evidence type across the DREAM4 subnetworks. Interestingly, TEXTADJ
achieves higher precision than its statistical counterpart. However, STANDARDADJ gains over TEX-
TADJ in recall. The result further substantiates the benefit of joint modeling in recovering additional
orientations under low-recall inputs. Nonetheless, the comparison points to the need for a deeper
understanding of the role KBs play in causal reasoning.

5.3 Experiment Details

To obtain marginal and conditional (in)dependence tests, we use linear and partial correlations with
Fisher’s Z transformation. We condition on all sets up to size two. We set rule weights for both PSL
models to 5.0 except for rule C2 which is set to 10.0, since it encodes a strong acyclicity constraint.
Both models use an α threshold on the p-value to categorize independence tests as CONDDEP,DEP or
CONDINDEP,INDEP. We select α with 10-fold cross validation. We hold out each subnetwork in
turn and use the best average F1 score across the other subnetworks to pick α ∈ {0.1, 0.05} raised to
powers {1, 2, 3, 4, 5}. CAUSOBS selects two different α values for binning independence tests and
computing adjacencies, and CAUSFUSE requires a single α for tests only. We also select rounding
thresholds for both PSL models within the same cross-validation framework. Since α is typically
small, we rescale truth values p for CONDINDEP,INDEP by 3

√
p to reduce right-skewness of values.

We rescale all STRING affinity scores to be between 0 and 1.

6 Related Work

Our work extends constraint-based methods to causal discovery, most notably the PC algorithm
[13], which first infers adjacencies and maximally orients them using deterministic rules based
on conditional independence. PC only supports external evidence in the form of fixed edges or
non-edges. Our work is motivated by recent approaches that cast causal discovery as a SAT instance
over conditional independence statements [6, 7, 5]. SAT-based approaches are based on logical
representations that more readily admit additional constraints and relations from domain knowledge.
However, so far, logical causal discovery methods use external evidence to identify probable edges.

In a separate vein, prior work has extended text-mining to identify regulatory networks and genetic
interactions only from scientific literature [11, 12, 9]. In contrast, our goal is to propose techniques
that leverage both statistical test signals and text evidence. The work most similar to ours combines
gene expression data with evidence mined from knowledge bases to infer gene regulatory networks [3].
However, the regulatory network inference orients edges using hard-coded knowledge of transcription
factors instead of reasoning about causality. In our approach, we propose a principled causal discovery
formulation as the basis of incorporating KB evidence.

7 Discussion and Future Work

In this work, we present an initial approach for reasoning with noisy extraction-based evidence
directly in a logical causal discovery system. We benefit from a flexible logical formulation that
supports replacing conventional adjacencies computed from observational data with cheaply obtained
extractions. Our evaluation suggests that the noisy KB-based proxy signal achieves comparable
performance to conventional methods. The promising result points to future research in exploiting
KBs for causal reasoning, greatly mitigating the need for costly observational data. We see many
directions of future work, including better extraction strategies for mining scientific literature and
finding text-based proxies for additional statistical test signals. KBs could provide ontological
constraints or semantic information useful for causal reasoning. We additionally plan to study
knowledge-based constraints for causal discovery.
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