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Abstract Causal directed acyclic graphical models (DAGs)
are powerful reasoning tools in the study and estimation of
cause and effect in scientific and socio-behavioral phenom-
ena. In many domains where the cause and effect structure is
unknown, a key challenge in studying causality with DAGs
is learning the structure of causal graphs directly from ob-
servational data. Traditional approaches to causal structure
discovery are categorized as constraint-based or score-based
approaches. Score-based methods perform greedy search over
the space of models whereas constraint-based methods iter-
atively prune and orient edges using structural and statis-
tical constraints. However, both types of approaches rely
on heuristics that introduce false positives and negatives.
In our work, we cast causal structure discovery as an infer-
ence problem and propose a joint probabilistic approach for
optimizing over model structures. We use a recently intro-
duced and highly efficient probabilistic programming frame-
work known as Probabilistic Soft Logic (PSL) to encode
constraint-based structure search. With this novel probabilis-
tic approach to structure discovery, we leverage multiple in-
dependence tests and avoid early pruning and variable order-
ing. We compare our method to the notable PC algorithm on
a well-studied synthetic dataset and show improvements in
accuracy of predicting causal edges.
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1 Introduction

Causal models encode cause and effect relationships between
variables in a system, and are of interest to economists, sci-
entists, and statisticians alike. Perhaps the most notable in
this class of models are causal directed acyclic graphical
models (causal DAGs), which provide an intuitive and com-
pact notation for expressing cause and effect dependencies
between variables. Unlike standard, associative DAGs, edges
in a causal DAG indicate direct cause relationships between
the parent and child. Even with its conditional probability
parameters fixed, a causal DAG still represents a family of
distributions that admit manipulations to variables, known
as interventions. Interventions are studied using a mathe-
matical framework called do-calculus and estimate causal
effects between variables. Interventions in causal DAGs are
important computational mechanisms for reasoning about
the effect that changes to a particular variable could have
on downstream variables. In some domains, human experts
encode causal DAGs and computational methods perform
causal inferences with interventions. However, in many do-
mains where expert knowledge is limited or insufficient for
developing a causal model, the goal of computational meth-
ods is to discover causal DAGs from observed data.

In the context of causal DAGs, causal structure discov-
ery refers to learning equivalence classes of causal DAGs
directly from observational data. Since passively observed
data does not suffice to identify a single causal DAG, struc-
ture discovery methods output a partially oriented DAG rep-
resenting an equivalence class or an exemplar DAG of the
class. Approaches to causal structure discovery from ob-
served data can be characterized as score-based, constraint-
based, or hybrids of the two. Typically, score-based methods
take a Bayesian approach to greedily search and score the
posterior probability of the posited structure given the data
subject to regularization on the model complexity [2, 3, 4,
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5, 13, 9]. Scoring functions include Bayesian scores such as
Bayesian Information Criterion (BIC) and Akaike Informa-
tion Criterion (AIC) and information theoretic scores such
as Minimum Description Length (MDL) [9]. However, these
search-and-score methods are computationally expensive due
to the exponential space of possible model.

In contrast to score-based approaches, constraint-based
methods start with a complete undirected graph and itera-
tively prune edges to output a partially oriented DAG that
satisfies structural and acyclicity constraints implied by con-
ditional independence tests and d-separation criteria [24].
The PC 1 algorithm is perhaps the most notable of constraint-
based structure discovery approaches [23]. PC and its sub-
sequent extensions are sound and complete under particu-
lar assumptions, and computationally efficient, they remain
sensitive to false positives and negatives from independence
tests, and inherent orderings in the algorithm. Rich and com-
plex data are especially susceptible to noisy independence
testing. Because these approaches are iterative, errors propa-
gate throughout phases of the algorithm. Although constraint-
based methods admit domain knowledge constraints through
forced edges or non-edges and fixed orderings over vari-
ables, use of more flexible domain knowledge constraints
remains an open problem.

Constraint-based causal structure discovery has also been
studied from the lens of MAX-SAT and linear programming
[16, 15], two well-studied ways to solve constraint satisfac-
tion problems. In this work, we recognize that causal struc-
ture discovery can also be viewed as inference problem. We
extend this viewpoint by formulating the problem of joint
probabilistic inference of causal structure and introducing an
approach for inferring causal edges and adjacencies between
variables from observational data. Our approach uses a re-
cently introduced probabilistic programming framework, Prob-
abilistic Soft Logic (PSL). PSL is a templating language for
a particular class of continuous Markov random field models
that enjoy exact and efficient inference. Motivated by the PC
algorithm, we model structural and d-separation constraints
with the PSL framework to jointly infer causal structure,
without early pruning or reliance on variable orderings.

Our main technical contributions include:

– Extending the causal structure discovery problem within
the PSL framework as a joint inference problem

– Formulating a constraint-based probabilistic modeling
approach motivated by the PC algorithm.

– Evaluating our approach on publicly available, well-studied
synthetic dataset from the Causality Workbench [14].

Section 2 details the problem of causal structure discovery
and provides background on the constraint-based PC algo-
rithm. In Section 3, we formulate the problem of joint causal
structure inference and describe our probabilistic framework

1 PC stands for Peter-Clark, the authors of the algorithm

for encoding such a model. Section 4 presents the dataset
and results from our evaluation experiment. In Section 5,
we outline related work in causal structure discovery and
propose multiple avenues for future study in Section 6.

2 Causal Structure Discovery Problem

Formally, a directed acyclic graphical model (DAG) G =

(V,E) over a set of variables V = {X1 . . .Xn} defines a joint
probability distribution of the form

P(X1, . . . ,Xn) =
n

∏
i=1

P(Xi|Parents(Xi))

where Parents(Xi) refer to the direct ancestors of a variable
Xi in G and P(Xi|Parents(Xi) parametrize the model. Thus,
G encodes conditional independences between variables in
the underlying distribution. The criteria for d-separation de-
termine all conditional independences of the form I(X ,Y ;S)
where S is the conditioning set. P(X1, . . . ,Xn) for G satisfies
the global Markov condition if and only if for any three dis-
joint subsets of variables X,Y,Z from V, if X is d-separated
from Y given Z, then X is independent of Y given Z in P. In-
tuitively, the property guarantees a one-to-one mapping be-
tween the independences in G and P, allowing us to reason
over G directly instead of P.

As mentioned, causal DAGs have additional semantics
to encode cause-and-effect relations between variables. For-
mally, we say that X is a cause of Y if the probability distri-
bution of Y changes as values of X change. Furthermore, X
is a direct cause of Y if manipulations of X change the prob-
ability distribution of Y regardless of manipulations to any
other variables in V\{X ,Y}. A causal DAG Gc =(V,E) con-
tains an edge from Xi to X j only if Xi is a direct cause of X j.
In the causal structure discovery problem, we assume that
there exists a true, underlying Gc that describes P(X1 . . .Xn)

for variables X = {X1 . . .Xn}. Given a set of m observations
{X1 . . .Xm} of the variables, the goal of the structure discov-
ery algorithm is to identify causal edges Ec and undirected
edges Eu when adjacency but not orientation can be deter-
mined.

2.1 Constraint-based Discovery with PC

This section focuses on constraint-based structure discov-
ery and provides background on the foundational PC algo-
rithm. PC outputs an equivalence class of DAGs that con-
tain Gc, known as a CP-DAG. A CP-DAG consists of both
directed edges where a causal edge is uncovered and undi-
rected edges when only associational, not causal, depen-
dence can be established.
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2.1.1 The PC Algorithm

Algorithm 1 below describes the key idea of PC at a high-
level.

Algorithm 1 PC Algorithm
1: procedure PC(Observations X1 . . .Xn, Conditional Independence

Testing Procedure) Require: An ordering over variables X
2: Find the skeleton graph C and separation sets according to the

iterative procedure described below.
3: Orient unshielded triples in C based on the separation sets
4: In C , orient as many of the remaining undirected edges as pos-

sible using rules 1-3 described below.

Finding the skeleton graph The first step of the PC algo-
rithm relies on conditional independence tests and the prin-
ciple of d-separation in a DAG to find all undirected edges
between nodes, producing a skeleton graph. The later steps
of the algorithm orient as many edges as possible in this
skeleton graph. The skeleton graph subroutine begins with a
complete graph and uses conditional independence to itera-
tively remove edges. That is, if xi ⊥⊥ x j|S, the edge xi− x j
is removed. The algorithm typically queries a procedure that
tests for independence using the sample data.

The algorithm iterates over the size l of conditioning set
S, starting with l = 0 when marginal independences between
variables are tested. To prevent the combinatorial number of
possible independence tests, the algorithm assumes an or-
dering over the variables and performs tests based on the
ordering and each variable’s adjacency list. If an edge is re-
moved, it will never be considered again, thereby admitting
more efficient search over the space.

As edges are iteratively removed based on l and the or-
dering, we define a separation set of i and j as the con-
ditioning set Sij such that xi ⊥⊥ x j|Sij. The algorithm stops
when there are no more conditioning sets of size l or when
l reaches a pre-specified number. The resulting graph is de-
noted C . The separation sets are used in the next stage of
orienting unshielded triples.

Orienting triples and other orientation rules The remainder
of the algorithm repeatedly applies the following rules until
as many edges are oriented as possible:

– Determine v-structures by considering all consecutive
edges xi − x j − xk in C and orienting as a v-structure
if x j /∈ Sik.

– Orient x j− xk into x j → xk whenever there is a directed
edge xi→ x j such that xi and xk are not adjacent.

– Orient xi−x j into xi→ x j whenever there is a chain xi→
xk→ x j.

– Orient xi−x j into xi→ x j whenever there are two chains
xi− xk→ x j and xi− xl → x j such that xk and xl are not
adjacent.

The resulting output after repeated application is a par-
tially oriented graph known as the CP-DAG. At a high-level,
PC consists of a graph search phase followed by a con-
straint satisfaction phase to avoid cycles and additional v-
structures.

3 Joint Probabilistic Causal Structure Inference

This section first introduces the problem of inferring causal
structure and provides an overview on the Probabilistic Soft
Logic (PSL) framework. We describe our approach to mod-
eling causal structure discovery with PSL for joint inference
of causal and adjacency edges.

3.1 The Probabilistic Causal Structure Discovery Problem

In the previous section, we review the PC algorithm. PC suf-
fers from two major drawbacks: (1) noise from conditional
independence testing and (2) incorrect edge removals are
never recovered and errors propagate. In this section, we in-
troduce the novel problem of joint probabilistic inference of
causal structure to better trade-off against noisy information
and more robustly uncover the underlying causal graph. Un-
like previous methods that either greedily search over struc-
tures or iteratively prune edges to find a structure, we encode
the search over possible causal DAGs as optimization within
PSL.

Again given n observations of values for X , the chal-
lenge of probabilistic inference of causal DAGs is to model
the distribution over possible CP-DAGs. That is, we want
to jointly infer all adjacencies and oriented edges. In this
setting, finding the most probable CP-DAG reduces to max-
imum a posteriori (MAP) inference in this distribution.

3.2 Probabilistic Soft Logic and Hinge-loss Markov
Random Fields

Our approach focuses on a special class of Markov ran-
dom field (MRF) known as Hinge-loss MRF (HL-MRF).
This section reviews the foundations of HL-MRFs and gives
background on Probabilistic Soft Logic (PSL), the templat-
ing language that describes these models.

Like other probabilistic modeling frameworks, notably
Markov logic networks, PSL uses a logic-like language for
defining the potential functions for a special form of condi-
tional random field [20]. HL-MRFs are log-linear exponen-
tial family models that admit efficient, scalable and exact
maximum a posteriori (MAP) inference [1]. These models
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Rule 1: INDEPENDENT(A,B,SepSet) → ¬ADJ(A,B)

Rule 2: ADJ(A,B)∧ADJ(B,C)∧¬INSEPSET(B,A,C) → CAUSES(A,B)

Rule 3: ADJ(A,B)∧ADJ(B,C)∧¬INSEPSET(B,A,C) → CAUSES(C,B)

Rule 4: ADJ(B,C)∧CAUSES(A,B)∧¬ADJ(C,B) → CAUSES(B,C)

Rule 5: ADJ(A,B)∧CAUSES(A,C)∧CAUSES(C,B) → CAUSES(A,B)

Rule 6: ADJ(A,B)∧ADJ(A,C)∧CAUSES(C,B)∧ADJ(A,D)∧CAUSES(D,B)∧¬ADJ(C,D) → CAUSES(A,B)

Fig. 1 Encoding constraint-based PC algorithm causal structure search criteria as logical rules in PSL.

are defined over continuous random variables, which pro-
vide a natural interpretation for real-valued similarities. MAP
inference in HL-MRFs is a convex optimization problem
over these variables. Formally, a hinge-loss MRF defines a
joint probability density function of the form:

P(Y|X) =
1
Z

exp
(
−

M

∑
r=1

λrφr(Y,X)
)

where the entries of target variables Y and observed vari-
ables X are in [0,1], λ is a vector of weight parameters, Z
is a normalization constant, and

φr(Y,X) = (max{lr(Y,X),0})ρr

is a hinge-loss potential specified by a linear function lr
and optional exponent ρr ∈ {1,2}. Relaxations of first-order
logic rules are one way to derive the linear functions lr(·)
in the hinge-loss potentials φr. Given a collection of logical
implications based on domain knowledge described in PSL
and a set of observations from data, the rules are instanti-
ated, or grounded out, with known entities in the dataset.
Each instantiation of the rules maps to a hinge-loss potential
function φr(Y,X) as shown above, and the potential func-
tions define an HL-MRF model.

To illustrate modeling in PSL, we consider a prototyp-
ical similarity based rule that encourages transitive closure
for link prediction between entities a,b,c:

SIMILAR(a,b)∧LINK(b,c)→ LINK(a,c)

where instantiations of the predicate LINK represent contin-
uous target variables for a link prediction task and instanti-
ations of SIMILAR are continuous observed variables. The
convex relaxation of this logical implication derived using
the well-known Lukasiewicz logic for continuous truth val-
ues is equivalent to the hinge-loss function

max(SIMILAR(a,b)+LINK(b,c)−LINK(a,c)−1,0)

and can be understood as its distance to satisfaction. The
distance to satisfaction of this ground rule is a linear function
of the variables and thus, exactly corresponds to

φr(LINK(b,c),LINK(a,c),SIMILAR(a,b))

the feature function that scores configurations of assignments
to the three variables. Intuitively, distance to satisfaction rep-
resents the degree to which the rule is violated by assign-
ments to the random variables conditioned on the observa-
tions. Thus, MAP inference minimizes the weighted, convex
distances to satisfaction to find an consistent joint assign-
ment for all the target variables:

arg min
y∈[0,1]n

m

∑
r=1

wr max{lr(y,x),0}

Higher rule weights induce higher penalties for violat-
ing the rule increasing its relative importance to other rules.
Weights are learned from data through maximum likelihood
estimation using training data and the structured perceptron
algorithm. Exact MAP inference is performed on the learned
model to find the most likely assignments for variables us-
ing the consensus based ADMM algorithm. PSL supports
latent variable modeling with additional EM-based learning
algorithms. For a full description of PSL, see Bach et al. [1]
Thus, PSL rules encode the domain knowledge that leads
to a consistent assignment to all target variables. HL-MRFs
have achieved state-of-the-art performance in many domains
including knowledge graph identification [18], student en-
gagement understanding in MOOCs [19], drug-target inter-
action prediction [11, 10], social spam detection [12], and
recommendation [17]. The open source PSL software can be
downloaded from the website (http://psl.umiacs.umd.
edu/).

3.3 The PC-PSL Model

Since MAP inference in PSL can be viewed as a soft-constraint
optimization, we encode the skeleton and orientation con-
straints used by PC as a PSL model. We describe in detail
below the predicates and rules used in our PSL model of
joint causal structure inference. Figure 1 shows all the log-
ical formulas defined in PSL to represent the variables and
constraints used in the PC algorithm.
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3.3.1 Predicates for Causal Inference

We define the key predicates INDEPENDENT, CAUSES, and
ADJ. We include an auxiliary predicate INSEPSET for use in
orienting colliders based on d-separation. From conditional
independence tests performed between pairs of variables,
with varying separation sets, we fully observe p-values and
treat them as evidence for INDEPENDENT. Thus, INDEPEN-
DENT is an observed predicate whose groundings represent
the evidence X in the conditional HL-MRF distribution.

Orientation of v-structures, or colliders, requires reason-
ing about separation sets for conditional independence. We
enable checking separation sets with groundings of the IN-
SEPSET predicate. The model jointly infers values of both
CAUSES(A,B) and ADJ(A,B) for all possible pairs of nodes
A,B. Thus, groundings of CAUSES and ADJ are the unob-
served, or target, variables Y in P(Y|X).

3.3.2 PC-PSL Rules

Figure 1 includes all the rules used in PC represented as log-
ical implications involving the predicates described above.
Rule 1 corresponds to the skeleton phase of the PC algo-
rithm, where undirected edges are pruned based on strong
evidence of independence between variables. PC prunes iter-
atively, exploiting the reduction in adjacencies to more effi-
ciently perform conditional independence tests between ad-
jacent variables given adjacent conditioning sets. However,
the iterative pruning introduces false positives and negatives.
In contrast, the PC-PSL model optimizes and infers adjacen-
cies, allowing for more than one independence test between
variables based on many possible separation sets.

Rules 2-3 correspond to the orientation of colliders from
chains, or unshielded triples. This rule encodes the well-
known d-separation criterion that a variable not in the condi-
tioning set of independent variables must be a collider. The
unshielded triples are represented by conjunctions of ADJ

variables and checks for membership in separation set are
represented with INSEPSET.

The remainder of the rules, 4-6, correspond to orienta-
tion rules 1-3 used by PC and infer causal edges represented
by predicate CAUSES. The rules encode constraints to avoid
cycles and any additional v-structures. Specifically, rule 4
prevents 3-cycles within partially oriented triples, or chains
of three variables. Rule 5 prevents additional v-structures
from forming among these partially oriented triples. Finally,
rule 6 prevents cycles from forming along two separate chains
of three variables.

Table 1 Average accuracy and F1 score and standard deviation of
causal edge discovery comparing PC and PC-PSL on LUCAS dataset.

Method Causal Edge Accuracy Causal Edge F1-score

PC 0.91 ± 0.06 0.53 ± 0.26
PC-PSL 0.94 ± 0.02 0.58 ± 0.19

4 Evaluation

In this section, we describe the synthetic dataset used for
experimental evaluation. We outline the evaluation setup and
task, and present results from our preliminary studies.

4.1 Dataset

We use the Lung Cancer Simple Set (LUCAS) synthetic
dataset made publicly available through the Causality Work-
bench [14]. The true causal DAG consists of 12 binary vari-
ables: (1) Smoking, (2) Yellow Fingers, (3) Anxiety, (4) Peer
Pressure, (5) Genetics, (6) Attention Disorder, (7), Born an
Even Day, (8) Car Accident, (9) Fatigue, (10) Allergy, (11)
Coughing and (12) Lung Cancer.

The true causal graph consists of 12 causal edges be-
tween variables. Figure 2 shows the underlying ground truth
causal DAG for this system. The dataset contains 2000 ob-
servations of all variables.

4.2 Preliminary Results

We perform G2 statistical independence tests between all
pairs of variables. The G2 test is closely related to the χ2

test of independence and also Kullback-Leibler divergence.
Then, for all pairs of variables, we enumerate over all com-
binations of conditioning sets up to maximum set size of
3 and perform G2 tests of conditional independence. Each
X , Y , and separation set S constitutes a grounding of IN-
DEPENDENT, with the independence test’s p-value encoding
the soft truth score used by PSL. For each Z ∈ S between X
and Y , we construct groundings for INSEPSET. The infer-
ence task is to predict truth values for CAUSES and ADJ

between all pairs of X and Y .
We compare the PC-PSL model against the PC algo-

rithm implemented in the pcalg library for the Python lan-
guage. We run PC also with G2 independence tests, max-
imum separation set size of 3, and with pruning threshold
α = 0.01. We evaluate PC and PC-PSL for the accuracy and
F-measure of predicted causal edges with 3-fold cross vali-
dation. We split the possible causal edges into folds and use
training folds in turn to select thresholds for rounding PC-
PSL [0,1] output values to {0,1}. We perform grid search
and select the best performing thresholds on the training
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Fig. 2 Synthetic LUCAS ground truth causal DAG among 12 binary variables described below.

folds and evaluate on the test fold. We compare our results
with the performance of PC on each test fold.

Table 1 shows the average accuracy and F1-score and
standard deviations for causal edge identification compar-
ing PC and PC-PSL. The PC-PSL sees gains over the PC
algorithm in identifying true causal edges. Moreover, infer-
ence for PC-PSL completes in seconds compared to minutes
required by the PC algorithm, even with additional indepen-
dence test evidence.

5 Related Work

Our work builds on the foundational constraint-based PC al-
gorithm introduced by Spirtes and Glymour [23] for struc-
ture discovery. As we note in section 3, PC remain sensi-
tive to false positives and negatives from independence tests,
and because the algorithm is iterative, errors propagate to
later phases of the algorithm. Extensions of PC include the
Fast Causal Inference (FCI) algorithm [22] that admits latent
variables and confounders, and a variable order-independent
variant of PC [7]. In our work, we instead encode the con-
straints of the PC algorithm in the PSL framework to per-
form constraint-based optimization and find a joint assign-
ment to all causal edges without iterative pruning or depen-
dencies on ordering.

Perhaps most similar to our work, Hyttinen et al. [15]
study discovery of cyclic DAGs by encoding causal edges
as variables in a MAX-SAT problem with constraints based
on d-separation criteria. However, in our work, we develop
a fully probabilistic that can be viewed as a relaxation of
MAX-SAT. Recently, ongoing work on inference-based struc-
ture discovery uses PSL to encode the constraint-based Log-
ical Causal Inference (LoCI) algorithm [6], mapping the pro-
posed logical formulas to HL-MRFs templated with PSL.

In a separate line of work, score-based approaches to
structure learning search over the space of possible mod-
els to find the model that best fits the data. Chickering [2,
3, 4], Chickering et al. [5], Friedman and Goldszmidt [13],
De Campos and Ji [9] take a Bayesian approach to greed-
ily search and score the posterior probability of the posited
structure given the data, P(S|D), subject to regularization on
the model complexity Scoring functions include Bayesian
scores such as Bayesian Information Criterion (BIC) and
Akaike Information Criterion (AIC) and information theo-
retic scores such as Minimum Description Length (MDL)
[9]. In contrast to constraint-based methods, score-based ap-
proaches start with an empty or randomly initialized DAG
and add, remove or negate edges, scoring each manipulation
to the model until a sufficiently good structures is found. Al-
though in this work we focus on applying PSL as a constraint-
based method, we see our approach as performing a meta-
search, or optimization, over the space of possible model
structures. In between score- and constraint-based approaches,
recently there has been a rich body of work on hybrid struc-
ture learning approaches that use constraint-based methods
to initialize a partially oriented DAG for input to search-
and-score methods. Dash and Druzdzel [8] apply PC to ob-
servational data and use the resulting CP-DAG as input to
a greedy search that uses the standard likelihood score for
DAGs. Tsamardinos et al. [25] similarly use PC in the first
phase to identity an equivalence class of models given by the
CP-DAG, and perform hill-climbing in the space of mod-
els to find best fitting DAG. In contrast, Schmidt et al. [21]
prune the search space with L1-regularization based variable
selection by fitting logistic regression models to the vari-
ables. We see multiple opportunities to extend our approach
to be a hybrid method that further optimizes model structure
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over additional score-based criteria beyond our initial set of
constraints.

6 Discussion and Future Work

In this work, we formulate the problem of joint inference
of causal structure from observational data and introduce
a probabilistic approach that uses PSL framework to build
on constraint-based structure discovery methodology. From
our preliminary evaluation on the LUCAS synthetic dataset
made available through the Causality Workbench, our PC-
PSL approach enjoys improvements over PC in accuracy
and F1 of causal edge prediction. In our future work, we plan
to extensively study multiple synthetic and real datasets, in-
cluding challenge problems posed on the Causality Work-
bench. We plan to extend our approach significantly by in-
corporating additional domain knowledge and variable se-
lection techniques, fusing multiple sources of observational
and experimental evidence, and more directly optimizing
model structure by following hybrid approaches to search-
ing and scoring.
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