

Lifted Hinge-Loss Markov Random Fields

Sriram Srinivasan⁺, Behrouz Babaki^{*}, Golnoosh Farnadi^{*}, & Lise Getoor⁺ * University of California, Santa Cruz * Polytechnique Montréal

Lifted Inference

• Graphical models can be large and hard to perform inference

Lifted HL-MRFs

Approach:

• Approach combines efficiencies from lifted inference and HL-MRFs

• Smaller problem potentially faster to solve

Contribution:

- Algorithm to combine power of lifting and convex objective of hinge-loss Markov random fields (HL-MRFs)
- Theoretical correctness of our approach
- Empirical analysis of impact of LHL-MRFs on different settings

Background

Hinge-loss Markov Random Field

• Probability distribution over continuous random variables.

 $\exp\{-f_w(\boldsymbol{y},\boldsymbol{x})\}$

$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z}$$
Z is the normalization constant and
$$f_w(\mathbf{y}, \mathbf{x}) = \sum_{i=1}^m w_i \phi_i(\mathbf{y}, \mathbf{x})^{p_i}; \text{ where } w_i \in \mathbb{R}^+$$

 $\phi_i(y, x) = \max(l_i(y, x), 0)^{p_i}$; where $p_i \in \{1, 2\}$

• where ϕ is a hinge-loss potential. Inference problem can be written as:

```
argmax_{\mathbf{v}} P(\mathbf{y}|\mathbf{x}) = argmin_{\mathbf{v}} f_{w}(\mathbf{y}, \mathbf{x})
```

 Optimization can be solved efficiently using alternating direction method of multipliers (ADMM).

Probabilistic Soft Logic

- Templating language for HL-MRFs
- Template rule grounded and converted to hinge-loss potentials.
- E.g., w: Friends(X,Y) \wedge Friends(Y, Z) \rightarrow Friends(X, Z) p = 2, quadratic loss Weight of rule
- Instantiate template rules with data: Bob, Dan, and Elsa w: Friends(Bob,Dan) \wedge Friends(Dan, Elsa) \rightarrow Friends(Bob, Elsa) ^2
- Converted to hinge-loss potential $\min((1 - y_1) + (1 - y_2) + y_3, 1) \quad y \in \{0, 1\}$

- Citeseer: collective classification on citation dataset 3312 papers and 4591 citations
- Cora: collective classification on citation dataset with 2708 papers and 5429 citations
- Wikidata: entity-resolution on familial network 418 families and 1844 family trees

Datasets	HL-MRF	LHL-MRF	LHL-MRF	LHL-MRF
		(solving)	(lifting)	(total)
	(in sec)	(in sec)	(in sec)	(in sec)
Wikidata	636.0	463.7	112.7	576.4
Cora	47.7	17.5	0.53	18.03
Citeseer	57.4	19.8	0.39	20.19

Q

Table 1: Time taken to perform inference on different datasets.

Analysis On Synthetic data

- Link prediction dataset with 1000 nodes
- Compare effect of LHL-MRF on varied density and precision of observed links.

Solve via Lifted QP approach

• Applying approach by Maldnov et. al. 2017 to lift and solve HL-MRFs

Experiment to compare performance of LHL-MRF and LHL-MRF(Gurobi) for varied symmetry in the graph.

