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Abstract

Statistical relational learning (SRL) frameworks allow users
to create large, complex graphical models using a compact,
rule-based representation. However, these models can quickly
become prohibitively large and not fit into machine memory.
In this work we address this issue by introducing a novel tech-
nique called tandem inference (TI). The primary idea of TI is
to combine grounding and inference such that both processes
happen in tandem. TI uses an out-of-core streaming approach
to overcome memory limitations. Even when memory is not
an issue, we show that our proposed approach is able to do
inference faster while using less memory than existing ap-
proaches. To show the effectiveness of TI, we use a popular
SRL framework called Probabilistic Soft Logic (PSL). We
implement TI for PSL by proposing a gradient-based infer-
ence engine and a streaming approach to grounding. We show
that we are able to run an SRL model with over 1B cliques in
under nine hours and using only 10 GB of RAM; previous ap-
proaches required more than 800 GB for this model and are
infeasible on common hardware. To the best of our knowl-
edge, this is the largest SRL model ever run.

1 Introduction
Statistical relational learning (SRL) (Richardson and
Domingos 2006; Getoor and Taskar 2007; Raedt and Ker-
sting 2011) is an effective method of combining weighted
first-order logic with probabilistic inference to make high-
quality, structured predictions. A characterizing trait of SRL
is the ability to generate large graphical models from a
small set of logical templates (rules). Several different SRL
frameworks have been proposed, each exploring different
types of graphical models, inference algorithms, or hyperpa-
rameter learning methods (Richardson and Domingos 2006;
Bach et al. 2017; Venugopal, Sarkhel, and Gogate 2016).
SRL methods have achieved state-of-the-art results in a var-
ied set of domains such as image classification (Aditya,
Yang, and Baral 2018), activity recognition (London et al.
2013), natural language processing (Ebrahimi, Dou, and
Lowd 2016), recommender systems (Kouki et al. 2015),
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knowledge graphs (Pujara et al. 2013), diagnosis of physi-
cal systems (Chen, Chen, and Qian 2014), and information
retrieval (Srinivasan et al. 2019b).

While SRL methods have seen a great deal of success,
they face a major challenge when scaling to large datasets.
The benefit of easily generating large graphical models from
a few template rules can turn into a curse as the graphical
models can quickly grow to intractable sizes that do not fit
in memory. Consider a simple transitive rule: Link(A,B)∧
Link(B,C) → Link(A,C), commonly used in conjunc-
tion with link prediction tasks. When this rule is instantiated
(grounded) with a simple dataset of 1000 entries, a graphical
model with a billion potentials is generated.

To address this issue, several approaches have been pro-
posed. Lifted inference (de Salvo Braz, Amir, and Roth
2005; Singla and Domingos 2008; den Broeck et al. 2011;
Kersting 2012; Sarkhel et al. 2014; Kimmig, Mihalkova, and
Getoor 2015; Srinivasan et al. 2019a) is a commonly em-
ployed and effective approach that exploits symmetry in the
data to generate a more compact model on which to perform
inference. While effective in many settings, a key draw-
back of these approaches is that evidence or noisy data can
break symmetries, making lifting less effective. To address
this issue, approximate lifting approaches have also been
proposed (Sen, Deshpande, and Getoor 2009; den Broeck,
Choi, and Darwiche 2012; Venugopal and Gogate 2014;
Das et al. 2019) which exploit approximate symmetries, al-
lowing for greater and more robust compression. However,
if the ground model lacks significant symmetry, approximate
lifting may improve tractability only at the cost of correct-
ness.

Several approaches orthogonal to lifted inference have
also been proposed that attempt to perform efficient ground-
ing by utilizing hybrid database approaches (Niu et al.
2011), exploiting the structure of rules (Augustine and
Getoor 2018), perform efficient approximate counting for
faster inference (Venugopal, Sarkhel, and Gogate 2015;
Sarkhel et al. 2016; Das et al. 2016), or distributing models
across multiple machines (Magliacane et al. 2015). However
these methods, while quite useful, only provide partial solu-
tions to grounding and efficient inference at scale. The hy-
brid database approach increases runtime substantially, ex-



ploiting rule structure requires large amounts of memory to
store the ground model, approximating counting methods
are applicable to discrete graphical models only, and dis-
tributing across several machines does not reduce the overall
memory required to run a large program.

In this paper, we propose an alternate approach to scal-
ing which performs inference in tandem with grounding.
This enables us to scale SRL systems to large, previously
intractable, models. Our approach, which we refer to as tan-
dem inference (TI), uses a novel streaming grounding archi-
tecture and an out-of-core inference algorithm that utilizes
a disk cache in order to consume a fixed amount of mem-
ory. This allows TI to scale unbounded by a machine’s main
memory. Furthermore, even with increased I/O overhead,
our approach runs the entire process of grounding and in-
ference in a fraction of the runtime required by traditional
approaches. Since TI is orthogonal to lifting and some of the
other strategies, it can be combined with them for further
improvements.

The TI concept is general and can potentially be applied
to several different SRL frameworks. In this paper, we show
how it can be implemented in probabilistic soft logic (PSL)
(Bach et al. 2017). PSL is a SRL framework that generates
a special kind of undirected graphical model called a hinge-
loss Markov random field (HL-MRF). A key distinguishing
factor of a HL-MRF is that it makes a continuous relaxation
on random variables (RVs) which transforms the inference
problem into a convex optimization problem. This allows
PSL to use optimizers such as alternating direction method
of multipliers (ADMM) (Boyd et al. 2011) to perform effi-
cient inference.

Our key contributions are as follows: 1) we propose a
general framework, TI, which uses streaming grounding and
out-of-core streaming inference to perform memory effi-
cient, large-scale inference in SRL frameworks; 2) we derive
a stochastic gradient descent-based inference method (SGD)
and show that the SGD-based method can outperform the tra-
ditionally used ADMM-based method; 3) we develop an effi-
cient streaming grounding architecture and SGD-based out-
of-core inference system that runs faster than previous state-
of-the-art systems; 4) through experiments on two large
models, FRIENDSHIP-500M and FRIENDSHIP-1B, which
require over 400GB and 800GB of memory respectively,
we show that, using just 10GB of memory, we can perform
inference on FRIENDSHIP-500M in under four hours and
FRIENDSHIP-1B in under nine hours; and 5) we perform an
empirical evaluation on eight realworld datasets to validate
the speed and accuracy of TI. In addition to enabling infer-
ence on models too large to fit into memory, on our largest
realworld dataset which does fit in memory, TI is 8 times
faster than traditional approaches.

2 Background: PSL and HL-MRFs
A HL-MRF is a probabilistic graphical model generated us-
ing a probabilistic programming language called PSL. A
PSL model (M) is defined through a set of weighted first-
order logic rules (template rules) which are instantiated with
data (D) (a.k.a. grounded) to generate several instances of

the template rules, called ground rules, which form a HL-
MRF. Each ground rule corresponds to a clique potential in
the HL-MRF. A HL-MRF can be formally defined as:
Definition 1 (Hinge-loss Markov random field). Let
y = {y1, y2, ..., yn} be n RVs, x = {x1, x2, ..., xm}
be m observed variables or evidence, and φ =
{φ1, φ2, ..., φK} be K potential functions such that
φi(x,y) = max(`i(x,y), 0)

di or `i(x,y)di . Where `i is
a linear function and di ∈ {1, 2} provides a choice of two
different loss functions, di = 1 (i.e., linear) and di = 2 (i.e,
quadratic). For weights w ∈ {w1, w2, ..., wK} a hinge-loss
energy function can be defined as:

E(y|x) =
K∑
i=1

wiφi(x,y) ; s.t.,y ∈ [0, 1] ; x ∈ [0, 1] (1)

and the HL-MRF is defined as:

P (y|x,w) =
1

Z(y)
exp(−E(y|x)) (2)

where Z(y) =
∫
y
exp(−E(y|x)).

The template rules in PSL define the interaction between
different observed and unobserved RVs. Each predicate of a
rule in PSL generates continuous RVs x,y ∈ [0, 1]. There-
fore, a rule can be interpreted as continuous relaxations of
Boolean logical connectives. For example, a∨b corresponds
to the hinge potential min(1, a + b), and a ∧ b corresponds
to max(0, a+ b− 1) (see (Bach et al. 2017) for full details).
The combination of all ground rules define the hinge-loss
energy function. Once the energy function is generated the
task of inference is to find the maximum aposteriori estimate
(MAP) of the RVs y given evidence x. This is performed by
maximizing the density function or minimizing the energy
function in (1). MAP inference is expressed as:

argmax
y

P (y|x) = argmin
y

E(y|x) (3)

The above expression is a convex optimization problem and
is efficiently solved by a convex optimizer such as ADMM.

We illustrate how HL-MRFs are instantiated using PSL
with the following example:
Example 1. Consider a social network with users U ∈
{U1, . . . , Uu} and friendship links F ∈ [0, 1]u×u, where
Friend(U1, U2) denotes the degree of friendship between
U1 and U2, near 0 if they are not friends and near 1 if
they are. Let Fo ⊂ F be the observed friendship links and
Fu = F \Fo be the unobserved links. The task is to predict
a value for all unobserved friendship links, Fu, given the
observed friendship links, Fo. Let LocalPredictor(U1, U2)
denote a prediction of Friend(U1, U2) made by a local clas-
sifier using the non-relational attributes ofU1 andU2. Using
these, we can define a simple PSL model to collectively infer
labels for all unobserved edges Fu as:

w1 : LocalPredictor(U1, U2)→ Friend(U1, U2)

w2 : Friend(U1, U2) ∧ Friend(U2, U3)→ Friend(U1, U3)

where w1 and w2 are non-negative weights for the rules. A
HL-MRF is generated by grounding the above model with



users U and friendship links F. Each instantiation of the
predicate Friend with a member of Fu is represented by un-
observed RV yi. Each ground rule, e.g.
w1 : LocalPredictor(Ann,Bob)→ Friend(Ann,Bob),
generates a hinge-loss potential φi.

3 Tandem Inference
In order to define our proposed tandem inference (TI) al-
gorithm we introduce two components: the grounding gen-
erator (GG) and the inference engine (IE). The GG sup-
ports streaming grounding, which is the process of gener-
ating ground rules in small batches without materializing all
grounding results into memory. The IE supports streaming
inference, which is the process of performing inference us-
ing a single potential at a time. Fig. 1a shows the system
architecture of TI. The GG takes as input the data D and the
model M, which GG uses to generate the ground model.
With respect to storage, the GG can leverage the hard disk,
the database, and RAM, while the IE can only utilize RAM.

The process flow of TI is shown in the network sequence
diagrams given in Fig. 1b (for the first round of inference)
and 1c (for subsequent rounds of inference). The IE begins
by requesting a potential function (also called a ground term)
from the GG. During the first round of inference, the GG uti-
lizes the database to generate ground rules. Once a ground
rule is created, it is converted into a ground term, written to
a disk cache, and then passed onto the IE. On subsequent
rounds of inference, the GG uses the disk cache alone to pro-
vide ground terms to the IE. As each term is returned from
the GG, the IE will optimize the term and update any rel-
evant RVs held in RAM. After all terms have been seen,
IE will then begin a new round of inference until conver-
gence criteria are met. Since the GG uses a fixed-size in-
memory cache and the IE discards terms after use, there is a
maximum amount of memory in use by TI at any given time.

3.1 Streaming Grounding
Streaming grounding is the TI component that is responsible
for providing ground terms one at a time to the IE. To support
streaming grounding, the underlying SRL framework must
be able to construct a single ground rule without instantiat-
ing large portions of the model, a process we will refer to as
partial grounding. Constructing the full ground network is
the SRL phase that is most prone to running out of memory,
so it is imperative that this process can be broken up into
small chunks. PSL is one of several SRL frameworks that
supports bottom-up grounding(Augustine and Getoor 2018),
which frames the problem of grounding a rule as construct-
ing and executing a SQL query. Relational database man-
agement systems (RDBMSs) have a built-in way to fetch
only a portion of the query results through cursors(Garcia-
Molina, Ullman, and Widom 2008). A cursor works as an
iterator for a query’s results. If the RDBMS and content of
the SQL query allows for it, cursors can return results as
they are generated by the query instead of waiting for the
full query to complete. Cases that force a database to mate-
rialize all results before returning any records include sort-
ing or deduplicating the results, both of which are avoided
in PSL grounding queries.

During the initial iteration of streaming grounding, the
database must be queried to fetch the ground terms. The pro-
cess described here is also shown as a network sequence di-
agram in Fig. 1b. The rules in the model,M, will be iterated
over until all have been grounded. When asked for a term,
the GG will first check if it has an open database cursor. If
there is no cursor or the current cursor has been exhausted,
then the database will be queried for the next rule and a new
cursor will be constructed. If all rules have been grounded,
then the GG will inform the IE that there are no more ground
terms for this iteration. With an open cursor, the next result
tuple will be fetched. The tuple will then be instantiated into
a ground rule and checked for triviality. A ground rule is triv-
ial if it will not affect the result of inference; for example, a
ground rule with a logical expression that is already satisfied
by observed variables is considered trivial. If the newly in-
stantiated ground rule is invalid, the process is repeated with
the next result from the cursor until a valid ground rule is
instantiated. After a ground rule is validated, it is converted
into a ground term. This term is then put into a cache buffer
and eventually passed on to the IE. Once the cache buffer is
full, or there are no more ground rules, it is written to disk.

After the initial iteration of TI, ground terms are fetched
from the disk cache in the order they were written during
the initial iteration of streaming grounding. The process de-
scribed here is shown as a network sequence diagram in Fig.
1c. The disk cache is written as several pages, one page to a
file. The number of terms written to a page can be configured
and the effect of this configuration is explored in Section 4.2.
When asked for a term, the GG will first ensure that a cache
page is loaded. If the current page has been exhausted and
there are no more pages, then the IE will be informed that
there are no more ground terms for this iteration. Each page
is written in binary to minimize I/O. The first 16 bytes of a
page contains the number of terms written to the page and
the size in bytes of all the terms in the page. Because each
term may contain a different number of RVs, the exact size
of each term is not known until it is generated. Each term
is then read into a preallocated term structure. A free list
of available terms large enough to fill a page is maintained
to minimize memory allocations. After all terms have been
read into the memory cache, the next term from the cache
will be returned to the IE until the page is exhausted.

The GG also provides the ability to return ground terms
in a semi-random order. The effectiveness of randomizing
term order is dependent upon the optimization algorithm
employed by the IE. During the initial iteration of stream-
ing grounding, the order of the terms is dependent upon the
order that results are returned from the database. However,
during subsequent iterations, there are more opportunities to
induce randomness. First, the order that pages are accessed
can be randomized. Second, the terms in each page can be
shuffled in-place after they have been read from disk. Al-
though not fully random since every term is guaranteed to
be no more than a page length away from other terms in
the same page, these steps provide a good amount of ran-
domness without increasing the number of I/O operations or
memory required.
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(a) Block diagram showing the TI system
architecture.

(b) Network sequence diagram for itera-
tion 1 of TI.

(c) Network sequence diagram for itera-
tions 2 through T of TI.

Figure 1: The architecture of TI.

3.2 Streaming Inference
The second core component of TI is streaming inference.
The open-source PSL implementation uses ADMM to min-
imize the convex objective produced by a HL-MRF. While
ADMM is an efficient algorithm, it places a high memory re-
quirement on the system. However, our primary goal of us-
ing TI is to alleviate any memory constraints for performing
inference. ADMM in PSL works by creating Lagrange vari-
ables (LVs) and a local copy of the RVs (LRVs) for every
potential. Every potential is optimized w.r.t. the LRVs and
an average over all LRVs is taken to obtain a global assign-
ment for the RVs. All ground rules, LRVs, and LVs are kept
in memory to make this process efficient. However, the need
to keep all this information in memory makes ADMM less
than ideal for streaming inference. To replace ADMM, we
propose a gradient-based optimization to solve Equation 3.

Stochastic Gradient Descent for PSL
Consider the energy function from Equation 1. To facilitate
easy gradient computation, this can be re-written as:

E(y|c) =
K∑
i=1

wiφi(y, ci) (4)

φi(y, ci) =

{
(yTqi − ci)di if linear loss
max((yTqi − ci), 0)di otherwise

ci = xT q̇i

where qi ∈ {0, 1,−1}n and q̇i ∈ {0, 1,−1}m are respec-
tive n-dimensional and m-dimensional ternary vectors which
indicates if a variable participates positively, negatively, or
not at all in potential function φi. The scalar ci incorporates
the information of all the observed variables participating in
φi and we use c to represent the vector of scalars ci. As a
reminder, in full gradient descent (GD), we iteratively opti-
mize by taking weighted steps in the direction of the energy
function’s (Equation 4) gradient until convergence or for T
steps. The weight of the steps is determined by the learning
rate, η. Additionally for PSL, Equation 1 has a restriction
that y ∈ [0, 1]n, therefore after each step we need to project
y back in to the box [0, 1] through truncation. The gradient

step update at every step t can be represented as:

yt = yt−1 − η∇yE(y|c) (5)
yt = min(max(yt, 0), 1) (6)

where∇yE(y|c) =
K∑
i=1

wi∇yφi(y, ci)

The gradient computation for the energy function involves
computing projected gradients for the potential functions.
The projected gradients can be written as:

∇yφi(y, ci) =


0 if hinge & yTxi ≤ ci
wiqi if di = 1

2wiqi(y
Tqi − ci) otherwise

(7)

Using the above equations, we can compute the gradient up-
date and run the process to convergence. Since the objective
is convex, the right choice of η will guarantee convergence.
However, an issue with GD is that at every step it needs to
compute the full gradient, requiring all terms. This is ex-
pensive and does not support our streaming approach. To
make it more compatible with our streaming approach, we
use stochastic gradient descent (SGD). In SGD, the gradient
is computed w.r.t. a single potential φi and an update to the
variables can be made without examining all terms.

yt = yt−1 − ηwi∇yφi(y, ci) (8)

The variables are then projected as in Equation 6. This up-
date is aligned with our streaming approach, and allows the
IE to request a single potential, perform an update on the
participating RVs, and continue on to the next potential.

An important factor to make SGD work in practice is the
correct choice of η, and many approaches have been pro-
posed to compute adaptive learning rates (Ruder 2016). One
of the more popular and successful methods for adaptive
learning rates is SGD-ADAM (Kingma and Ba 2014). In this
work we investigate three approaches: 1) using SGD-ADAM,
2) using a time-decaying learning rate (i.e., η = η

t ), and
3) using a constant learning rate η. In our experiments, we
observe that a time-decaying learning rate is more effective



Algorithm 1: SGD for PSL
Data: list of ground terms φ = {φ1, φ2, ..., φK}
Result: RVs y

1 η = learning rate;
2 y ∼ Unif(0, 1)n;
3 t = 1;
4 while not converged and t <= T do
5 for i ∈ {1 . . .K} do
6 Update y using φi with Equation 8;
7 y = min(max(y, 0), 1);
8 end
9 t = t+ 1;

10 Update η;
11 end

than more complicated mechanisms such as SGD-ADAM. Fi-
nally, the overall process of performing non-streaming infer-
ence using SGD in PSL is shown in Algorithm 1.

Now that we have a streaming grounding infrastructure
and the SGD-based PSL IE, we can perform TI. The algo-
rithm for TI is the same as Algorithm 1, except that the po-
tentials are read from the GG instead of from memory.

4 Empirical Evaluation
In this section, we evaluate the performance of our pro-
posed method on variety of realworld and two large syn-
thetic datasets. We answer the following questions: Q1) Can
we perform inference on large ground models that were pre-
viously intractable? Q2) Is streaming faster than and as accu-
rate as traditional inference? Q3) How much memory does
TI use? Q4) Can a gradient-based optimizer converge faster
than ADMM? Q5) What is the best strategy for selecting the
learning rate? We answer Q1 and Q2 in Section 4.1, Q3 in
Section 4.2, and Q4 and Q5 in Section 4.3. For all our ex-
periments, we set the max number of iterations, T , to 500, a
convergence tolerance of 10−6, and a machine with 400GB
of memory.

We perform our experiments on eight realworld datasets
and two synthetic datasets from a data generator previously
used to test scaling in PSL (Augustine and Getoor 2018)1.
The details of the datasets are as follows:
CITESEER: a collective classification dataset with 2,708
scientific documents, seven document categories, and 5,429
directed citation links.
CORA: a collective classification dataset with 3,312 docu-
ments, six categories, and 4,591 directed citation links.
EPINIONS: a trust prediction dataset with 2,000 users and
8,675 directed links which represent positive and negative
trust between users.
NELL: a knowledge graph construction dataset originally
derived from the NELL project with 27,843 entity labels
and 12,438 relations.
CITESEER-ER: an entity resolution dataset with a citation
network of 1136 authors references and 864 paper refer-
ences.

1Models, data, and code: https://github.com/linqs/aaai-ti

LASTFM: an artist recommendation dataset with 1,892
users, 17,632 artists, 92,834 user-artist ratings, and 12,717
friendship links.
JESTER: a joke recommendation dataset with 2,000 users,
100 jokes, and 200,000 user-joke ratings, sampled from the
larger JESTER-FULL dataset.
JESTER-FULL: the full Jester dataset. Contains 73,421
users, 100 jokes, and 7.3M user-joke ratings. To the best of
our knowledge, this is the first time the full Jester dataset
has been used in with an SRL framework.
FRIENDSHIP-500M: a synthetic link prediction dataset
with 2,000 users and 4M unobserved edges.
FRIENDSHIP-1B: similar to FRIENDSHIP-500M contain-
ing 2,750 users and 7.5M unobserved edges.

Table 1 provides details on number of rules in each model,
the number of ground rules generated, and the amount of
memory required to hold each model in memory.

Dataset Rules Ground Random Memory SourceRules Variables (GB)
CITESEER 10 36K 10K 0.10 Bach et al. (2017)

CORA 10 41K 10K 0.11 Bach et al. (2017)
EPINIONS 20 14K 1K 0.12 Bach et al. (2017)

NELL 26 91K 24K 0.13 Pujara et al. (2013)
CITESEER-ER 9 541K 485K 0.24 Bhattacharya and Getoor (2007)

LASTFM 22 1.4M 18K 0.45 Kouki et al. (2015)
JESTER 7 1M 50K 0.49 Bach et al. (2017)

JESTER-FULL 8 110M 3.6M 110 Goldberg et al. (2001)
FRIENDSHIP-500M 4 500M 4M 400+ Augustine and Getoor (2018)

FRIENDSHIP-1B 4 1B 7.6M 800+ Augustine and Getoor (2018)

Table 1: Details of models used and their memory con-
sumption for non-streaming inference. Memory usage for
FRIENDSHIP-500M and FRIENDSHIP-1B are estimates.
The memory consumed by TI depends on the page size cho-
sen. In our comparison experiments, we use a page size of
10M which uses about 10GB of memory.

4.1 Scale, Speed, and Convergence
We begin by examining the inference time and convergence
of TI, SGD, and ADMM on all ten datasets (Q1 & Q2).
Weights for the rules in each model are learned and re-scaled
to be in the range [0, 1]. Both SGD and TI use a time-decayed
learning rate and the initial learning rate η needs to be tuned.
For the LASTFM, FRIENDSHIP-500M, and FRIENDSHIP-
1B datasets we use η = 0.1, for CITESEER-ER we use
η = 10, and for all the other datasets we use η = 1.0. The
rational for choosing these learning rates is explained in Sec-
tion 4.3. TI also has a page size which can be tuned based
on the amount of memory available. Since our machine has
400GB RAM, we choose a page size of 10M for all datasets,
which uses about 10GB of memory. We discuss further de-
tails about trade-offs in page size, memory, and computation
in Section 4.2.

Scaling to Large Datasets: Fig. 2i and 2j show the
inference convergence w.r.t. time (in milliseconds) for
FRIENDSHIP-500M and FRIENDSHIP-1B. TI was able to
run the FRIENDSHIP-500M dataset in under four hours us-
ing only 10GB of memory. Both SGD and ADMM exhausted
the 400GB of memory available on the machine and failed to
run. Similarly, we observe that the FRIENDSHIP-1B dataset,
which we estimate to require more than 800GB to hold in
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Figure 2: Comparison of the runtimes of TI, ADMM, and SGD on 10 datasets.

memory, was able to run on the same machine in under nine
hours using only 10GB of memory. These results answer Q1
affirmatively, TI can successfully perform inference on large
ground models that were previously intractable.

Speed and Convergence: In order to address Q2, Fig. 2
shows the inference convergence for all datasets using all
three approaches. The time shown includes both the ground-
ing and inference phases (which happen together in TI).
In all datasets except CITESEER and CORA, we observe
that TI converges before the other methods even fully finish
grounding! In CITESEER and CORA, possibly due to some
rules with high weights, tuning the learning rate is difficult,
and, after the first steep drop, SGD and TI take many more it-
erations to converge compared to ADMM. As the ground
model size increases, we observe more significant timing
differences. In EPINIONS, CITESEER-ER, and LASTFM,
we see that TI finishes the entire process of grounding and
inference in just half the time taken by ADMM and SGD. For
JESTER, TI is over 5 times faster than both ADMM and SGD.
For our largest realworld dataset, JESTER-FULL, TI is about
8 times faster than both ADMM and SGD. This shows that
TI is faster than traditional approaches especially on larger
datasets and converges to the same function value.

4.2 Memory Efficiency
To answer Q3, how much memory TI uses, and test the effect
of page size, we run TI on the JESTER-FULL dataset with
page sizes between 10 and 1M potentials. We run SGD to es-
tablish baseline behavior. Since SGD holds all components
in memory, we consider it to have an infinite page size. We
measure the maximum memory usage during the entire run,
the mean number of I/O operations performed in a single it-
eration of optimization, and the mean time to complete a sin-
gle iteration of optimization. Because PSL is written in Java,
the memory usage we report is the size of the JVM’s heap.
I/O operations are measured by the number of calls made to
Java’s low-level I/O methods FileInputStream.read

and FileOutputStream.write. All reported values
are averaged over 10 runs.

Fig. 3a shows the peak memory usage over several runs
using different page sizes for TI. Naively, we expect the
amount of memory used to decrease with the page size:
the fewer ground terms held in memory, the less over-
all memory is used. However, instead we see that very
small pages sizes (10 and 100) lead to more memory be-
ing used. To understand why, we must remember that Java
is a garbage collected language and that memory marked
for garbage collection will still count as being in use. The
small page sizes cause many I/O operations to happen in
quick succession. Every I/O operation requires Java to allo-
cate memory buffers used in that operation. Therefore, the
discarded buffers are eventually cleaned up but not before
being counted in the memory total. A native language like
C that can directly make system calls and that does not have
to go through a virtual machine can avoid these extra alloca-
tions and inflated memory cost. Forcing the JVM to garbage
collect more frequently2 shows a more consistent memory
usage over all page sizes. This is because all the page sizes
still fit into memory and Java will continue to accumulate
memory until a point where garbage collection is triggered.
This point depends on the maximum size of the heap and is
common among all the runs. From this experiment we can
conclude that although using a smaller page size will use less
persistent memory, the JVM’s garbage collector will keep
most reasonable page sizes at the same memory usage lev-
els.

Fig. 3b shows the number of I/O operations per optimiza-
tion iteration. SGD does not perform any I/O operations. As
the page size increases, the number of I/O operations de-
creases. The impact of these additional I/O operations for a
small page sizes can be seen in Fig. 3c (per-iteration run-
time). The different page sizes result in approximately the

2A smaller value for the JVM parameter XX:NewRatio is
used to force more frequent garbage collection.
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(a) Maximum memory usage for TI over mul-
tiple page sizes.
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(c) Runtime per optimization iteration of
TI over multiple page sizes.

Figure 3: Memory usage, I/O usage, and speed of TI on the JESTER-FULL dataset w.r.t. page size. Page sizes listed as∞ are
run with SGD, which does not use pages.

same number of bytes read from disk and since the number
of potentials is the same, the time spent in optimization will
also be the approximately the same. However, the overhead
of the additional I/O operations causes substantially slower
iterations for page sizes of 10 and 100. For larger page sizes
(1000+), the difference in I/O overhead becomes negligible
and all have similar per iteration runtime.

4.3 Optimizer Efficiency and Learning Rate

0 2 4 6 8 10 12

3 · 10−2

4 · 10−2

5 · 10−2

Iterations

E
n
er
g
y
fu
n
ct
io
n

sgd
sgd-const-lr
sgd-adam
admm

(a) LASTFM dataset.
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(b) JESTER dataset.

Figure 4: The effect of different optimizers on convergence.

To answer Q4, can SGD converge as fast as ADMM, and
Q5, how to choose learning rate, we run experiments on the
LASTFM and JESTER datasets. The results here extend to
other datasets. Here, we compare four different approaches:
SGD with a decaying learning rate (SGD), SGD with a con-
stant learning rate (SGD-CONST-LR), SGD with an adaptive
learning rate (SGD-ADAM), and ADMM.

SGD vs. ADMM: Fig. 4 shows the convergence of dif-
ferent approaches w.r.t. number of iterations for the
LASTFM and JESTER datasets. Here, we observe that
SGD and ADMM converge to the same function value in dif-
ferent number of iterations. Typically, SGD takes fewer it-
erations to converge than ADMM. However, this is heavily
dependent on the learning rate chosen for SGD. If one can-
not find the right learning rate, then it is possible for SGD to
take significantly more iterations than ADMM.

Choice of Learning Rate: From Fig. 4 we observe that
SGD-CONST-LR is the slowest to converge, and there seems
to be little difference between SGD which uses time-decayed
learning rate and SGD-ADAM which uses an adaptive learn-
ing rate. SGD and SGD-CONST-LR have an initial learning
rate to be chosen. We observed that this can be chosen
in range η ∈ [ 1

10max(w) ,
10

max(w) ] for SGD, and for SGD-
CONST-LR, η ∈ [ 1

100max(w) ,
100

max(w) ]. Thus, we choose an η
of 1.0 and 0.1 for JESTER and LASTFM respectively for
SGD, and η of 0.01 for SGD-CONST-LR. SGD-ADAM has
four hyperparameter α, β1, β2, and ε to tune. This makes
it harder to get ideal performance with SGD-ADAM. Further,
SGD-ADAM uses additional parameters equal to three times
the number of RVs to perform adaptive tuning. In our experi-
ments, we choose α = 0.01, and use β1 = 0.9, β2 = 0.999,
and ε = 10−8 as suggested by (Kingma and Ba 2014).
From our evaluation we conclude that the simpler strategy,
SGD with decaying learning rate performs just as well as
SGD-ADAM, the more complicated adaptive strategy.

5 Conclusion and Future Work
In this paper we introduce tandem inference, TI, a new out-
of-core method for performing inference on large ground
models that don’t fit into main memory. To make TI pos-
sible, we introduce a streaming method for both grounding
and inference. Through experiments on ten datasets, we have
shown that TI can not only reduce runtime by up to eight
times, but it can do so using a fixed amount of memory. The
fixed memory nature of TI enables the SRL community to
scale to problems that were previously unreachable.

While this paper introduces the fundamentals of TI, there
remain several areas for research. Incorporating lifted in-
ference is a promising extension to TI. Because TI is or-
thogonal to lifting, these two can be combined to speed up
inference further. Next, despite impressive performance on
large datasets, the overall process of TI is largely sequential;
parallelizing TI can be another way to speeding up infer-
ence further. Another interesting avenue for research is to
create a hybrid IE using ADMM and SGD. SGD often min-



imizes quickly during the first few iterations, however may
take many more iterations to fully converge (especially if the
learning rate is poorly selected). Conversely, ADMM con-
verges more slowly than SGD, but more steadily. A hybrid
IE could start with SGD and then switch to ADMM after the
first few iterations. Finally, TI can be extended to any other
SRL framework that can support streaming grounding and
streaming inference.
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