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Facet Mismatch in Product Search
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In this work:

We identify facet mismatches
Refer to it as: 

Mismatch Classification (MC)Poor user experience

Why does it happen?
● Improper associations
● Lexical similarities
● etc..

Mismatch Classification as edge labeling
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Edge labeling for MC

Some human 
labeled mismatches
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Structured MC

● Limitations of TMC:
○ Insufficient labeled data
○ Ignores the rich relational structure such as similarities, hierarchy, etc.
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Queries Products
Query similarity

Query reformulation

Product similarity

Visual similarity

TMC predictions

Expensive to use all relationships 
(Time allowed for MC ~1ms)
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Probabilistic Soft Logic (PSL) w1: A ∧ B ->
 
C

w2: C ∧ A ->
 
B
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Weights Rules

Model: weighted logical rules
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Perform inference ADMM
Alternating direction 
method of multipliers

Convex objective

Bach et. al. JMLR 2017
https://psl.linqs.org

SMC using PSL
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Using product similarities 
in micrograph

w1: mismatch(q, p1) Λ similar(p1, p2) ⟶ mismatch(q, p2)

w2: ᆨmismatch(q, p1) Λ similar(p1, p2) ⟶ ᆨmismatch(q, p2)

Rules to incorporate product similarities
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For most queries all edges 
are unobserved
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Observed edges are 
human labeled

Just propagating mismatch 
labels will not work
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Augment TMC into SMC using PSL
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Using TMC 
in PSL

Rules to incorporate TMC
w3: TMC(q, p1) ⟶ mismatch(q, p1)

w4: ᆨTMC(q, p1) ⟶ ᆨmismatch(q, p1)
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SMC model

w1: mismatch(q, p1) Λ similar(p1, p2) ⟶ mismatch(q, p2)

w2: ᆨmismatch(q, p1) Λ similar(p1, p2) ⟶ ᆨmismatch(q, p2)

w3: TMC(q, p1) ⟶ mismatch(q, p1)

w4: ᆨTMC(q, p1) ⟶ ᆨmismatch(q, p1)1.0
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Problem of smoothing with SMC

TMC(“iPhone”, 
“iPhone Case Red”) = 1.0

TMC(“iPhone”, 
“iPhone Case Blue”) = 0.45
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Inference

Smoothing effect
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If threshold 
t=0.75

Incorrect classification
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Strong SMC (S2MC)

w3: TMC(q, p1) ⟶ mismatch(q, p1)

w4: ᆨTMC(q, p1) ⟶ ᆨmismatch(q, p1)

w6: strongTMC(q, p1) Λ similar(p1, p2)  ⟶ strongTMC(q, p2)

w7: ᆨstrongTMC(q, p1) Λ similar(p1, p2)  ⟶ ᆨstrongTMC(q, p2)

w8: strongTMC(q, p1) ⟶ mismatch(q, p1)

w9: ᆨstrongTMC(q, p1) ⟶ ᆨmismatch(q, p1)
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strongTMC=1.0Introduce new edge 
strongTMC = TMC iff TMC ≥ limu or TMC ≤ liml

User-defined 
threshold

example

limu = 0.85 
liml = 0.15

Full S2MC model
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✅

Speedup S2MC Using TRON in PSL

Fan et. al. JMLR 2008
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
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TRON
Trust region 

Newton method

● High convergence rate
● Lesser # of iterations
● Faster per iteration cost

Micrographs generate 
small HL-MRFs
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PSL 100s of potentials
10s of random variables

Perform inference

S2MC not large scale problem

Empirical Evaluation

● We use three anonymized dataset from product search with query-product pair
● Take top 8 products for every query
● Task: identify product type mismatch
● ~200K labels generated by human annotators
● Use GBDT as TMC trained using labeled data
● Use threshold t = 0.15 for classification
● Product similarity computed with title using word2vec
● Vary limu ∈ [0.15, 1] and liml ∈ [0, 0.15] 
● High scoring queries (HSQ): Queries with at least one product with strongTMC and one without 
● Coverage = #HSQ/total

Performance

D1 D2 D3

Ideal performance obtained using liml= 0.7 and limu= 0.58 and coverage = 64%

Speedup using TRON 

● Time taken per-query to perform S2MC using ADMM ~20ms
● Time taken per-query to perform S2MC using TRON <1ms

SpeedUp = Time using ADMM / Time using TRON

Runtime computed for S2MC using TRON from 
liblinear package and custom C++ implementation 

of ADMM for PSL

Conclusion 
● Introduced improving search through mismatch classification
● Show relational structure improves traditional approaches
● Introduced micrographs to perform efficient classification at runtime
● Using PSL how micrographs can be incorporated effectively
● How TRON can be used to further speed up inference
● Empirical results on real datasets to show how micrographs improve MC
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TMC
Train using observed 

edge labels

Traditional Mismatch 
Classifier (TMC) such 
as:
Logistic regression
Gradient boosted decision trees 
Deep learning
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Predict on 
unobserved edges

● Train and Predict using features 
from query and product

● Score TMC(Q,P) > t = mismatch
● t = user-defined threshold

Unobserved 
Edges

Assume query independence

Micrograph

Using micrograph at 
prediction referred to as 
Structured MC (SMC)Use probabilistic soft logic for SMC

● How can we incorporate full relational graph?
● Include contextual information to determine important facets?

Future work

Example

Example

inference

example

● Efficient scalable 
inference

● Low convergence rate

Clique potential:      Φi(y,x) = max( li(y, x), 0)p ; where p ∈ {1,2}
Energy function:      fW(y, x) = ∑i=1..mwiΦi(y,x) ; where wi ∈ R+

Probability density:  P(y | x) = exp{-fw(y, x)} / Z
MAP inference:       argmaxy P(y | x) = argminy fW (y, x)

https://psl.linqs.org/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/

