

amazon

Identifying Facet Mismatches In Search Via Micrographs

Sriram Srinivasan⁺, Nikhil S Rao^{*}, Karthik Subbian^{*}, & Lise Getoor⁺ * University of California, Santa Cruz * Amazon LLC

w_{g} : strongTMC(q, p1) \rightarrow mismatch(q, p1) w_{o} : \neg strongTMC(q, p1) $\rightarrow \neg$ mismatch(q, p1)

Empirical Evaluation

- We use three anonymized dataset from product search with guery-product pair
- Take top 8 products for every query
- Task: identify product type mismatch
- ~200K labels generated by human annotators
- Use GBDT as TMC trained using labeled data
- Use threshold t = 0.15 for classification
- Product similarity computed with title using word2vec

Dataset	Queries	Products
D1	1194	7790
D2	149	866
D3	591	1959

Mismatch Classification as edge labeling

- Vary $\lim_{n \to \infty} \in [0.15, 1]$ and $\lim_{n \to \infty} \in [0, 0.15]$
- High scoring queries (HSQ): Queries with at least one product with strongTMC and one without

• Coverage = #HSQ/total

	lim _L	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.10	0.11	0.12	0.13	0.14	0.15
10	lim _U	0.94	0.88	0.82	0.76	0.70	0.64	0.58	0.52	0.47	0.40	0.35	0.30	0.25	0.20	0.15
	Coverage	0.96	0.90	0.83	0.78	0.73	0.69	0.64	0.60	0.58	0.54	0.50	0.43	0.36	0.24	0.00

Ideal performance obtained using $\lim_{n \to \infty} 0.7$ and $\lim_{n \to \infty} 0.58$ and coverage = 64%

Speedup using TRON

- Time taken per-query to perform S²MC using ADMM ~20ms
- Time taken per-query to perform S²MC using TRON <1ms

SpeedUp = Time using ADMM / Time using TRON

Runtime computed for S²MC using TRON from liblinear package and custom C++ implementation of ADMM for PSL

Conclusion

- Introduced improving search through mismatch classification
- Show relational structure improves traditional approaches
- Introduced micrographs to perform efficient classification at runtime
- Using PSL how micrographs can be incorporated effectively
- How TRON can be used to further speed up inference
- Empirical results on real datasets to show how micrographs improve MC

Future work

- How can we incorporate full relational graph?
- Include contextual information to determine important facets?