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ABSTRACT

E-commerce search engines are the primary means by which cus-
tomers shop for products online. Each customer query contains
multiple facets such as product type, color, brand, etc. A successful
search engine retrieves products that are relevant to the query along
each of these attributes. However, due to lexical (erroneous title,
description, etc.) and behavioral irregularities (clicks or purchases
of products that do not belong to the same facet as the query),
some mismatched products are shown in the search results. These
irregularities are often detected using simple binary classifiers like
gradient boosted decision trees or logistic regression. Typically,
these binary classifiers use strong independence assumptions be-
tween the samples and ignore structural relationships available in
the data, such as the connections between products and queries.
In this paper, we use the connections that exist between products
and query to identify a special kind of structure we refer to as a
micrograph. Further, we make use of Statistical Relational Learn-
ing (SRL) to incorporate these micrographs in the data and pose
the problem as a structured prediction problem. We refer to this
approach as structured mismatch classification (smc). In addition,
we show that naive addition of structure does not improve the
performance of the model and hence introduce a variation of smc,
strong smc (s2mc), which improves over the baseline by passing
information from high-confidence predictions to lower confidence
predictions. In our empirical evaluation we show that our proposed
approach outperforms the baseline classification methods by up to
12% in precision. Furthermore, we use quasi-Newton methods to
make our method viable for real-time inference in a search engine
and show that our approach is up to 150 times faster than existing
ADMM-based solvers.

1 INTRODUCTION

When customers shop online, they issue queries that describe their
intent along multiple facets of their desired product: brand, color,
product-type, age group, size, gender, and activity. For example,
the query “red adidas shorts for boy age 6” has age, gender, color,
brand and a product type specified. These facets are critical for
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matching, ranking, and navigation. For instance, in the case of
navigation, a customer might first look for a specific brand and
then narrow down their choices based on color, obtaining relevant
results that align closely with their intent. However, due to past
behavioral associations (such as clicks, purchases, and cart-adds)
or noisy lexical information (such as low-quality seller supplied
keywords), or competition between brands, the search might result
in mismatched products.

Consequently, identifying facet mismatches between a query
and products in the catalog to avoid displaying irrelevant results
is an important component of providing customers with a satis-
fying shopping experience. A typical model for recognizing facet
mismatches outputs a score for one or more facets given a query-
product pair. This score indicates whether the product is a good
match for the query along that specific facet.

In modern datasets, there are vast amounts of additional struc-
tural information about queries, products, and their relationships.
This additional information can manifest itself in several ways and
can be used as side information during the retrieval, ranking and
mismatch classification training process.

(1) Products are typically co-purchased or co-viewed together.
We can include this information as a product-product graph.

(2) We can generate query and product latent representations
(embeddings) and use cosine similarity as an affinity score
between (query, product), (query, query), and (product, prod-
uct) pairs.

(3) Customer query reformulations within the same session can
be used to compute query-query similarities.

Incorporating such structural side information typically yields a
boost in model performance. Indeed, learning with side information
has shown to be successful in several applications such as recom-
mender systems [22, 30], knowledge graphs [25], entity resolution
[29], computer vision [15], and has recently been applied even in
deep learning tasks [34, 36].

Many information retrieval [2, 7, 21, 26] and ranking [35, 37]
tasks have used the structural information to improve their models.
These approaches create a graph (or similar relational structure)
using an item’s lexical information and improve the list of items
retrieved for a specific query. However, in this work, we do not focus
on using structural information to retrieve a better list of items,
rather we show a way to improve the quality of the retrieved list
by identifying mismatched items. Our approach focuses on using
heterogeneous structural information to identify searchmismatches
which can be subsequently used to either reorder or improve the
list by replacing the mismatched items.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Statistical relational learning (SRL) frameworks [9, 13] are an
effective way of incorporating heterogeneous structural informa-
tion to make more accurate predictions. An SRL model is typically
defined through the use of a set of weighted logical rules that
define a probabilistic graphical model. A recent SRL framework
called probabilistic soft logic (PSL) generates a specific type of prob-
abilistic graphical model known as a Hinge-Loss Markov Random

Field (HL-MRF) [3] that has shown state-of-the-art performance in
several domains by augmenting heterogeneous structural informa-
tion [22, 32]. A key property of PSL is that the random variables
generated for the corresponding HL-MRF are continuous between
zero and one. This casts the inference task into a convex optimiza-
tion problem, on which a scalable solver, the Alternating Directions
Method of Multipliers (ADMM) [6], is used to obtain state of the art
performance.

However, using additional information and performing graph-
ical model inference is slower than performing inference using a
simple pointwise binary classifier for facet mismatch. This presents
an additional challenge for applying these ideas to product search,
which requires the use of models with extremely fast inference for
real-time retrieval of search results. Existing scalable approaches
for graphical model inference [10, 33] do not meet the latency con-
straints of search systems. A customer may abandon the search if it
takes more than a few milliseconds between typing in a query and
obtaining the results. This constraint makes it extremely difficult
to use additional side information or use sophisticated models with
higher computational complexity.

In this paper, we develop a novel approach using the PSL frame-
work for facet mismatch classification and apply it to the task of
detecting product-typemismatches, a particularly egregious form of
facet mismatch since they lead to a significantly degraded customer
experience. As an example, a customer searching for an “iPhone”
expects to see different variety of iPhones in the search results and
not iPhone case or a screen protector. We show that incorporating
additional structural information present in the data can signifi-
cantly improve the classification performance. Secondly, to tackle
the problem of near real-time inference, we cast the problem of PSL
optimization as minimizing an SVM-like objective function and
use a Trust Region Quasi-Newton (TRON) [24] method to solve it.
We show that the resulting method achieves orders of magnitude
speedups over existing approaches for PSL optimization.

1.1 Contributions and Organization

To summarize, the contributions of our paper are as follows:

• We introduce a special query-product relationship graph
that we refer to as a micrograph which we show can be used
to improve facet mismatch classifiers. Micrographs ensure
that our approach scales independently of the number of
queries, allowing us to use it for industry-sized datasets.

• We show how micrographs can be utilized in the PSL frame-
work to improve facet mismatch classification by performing
collective inference. We refer to this approach as structured
mismatch classification (smc). We also show that naive inclu-
sion of structure does not improve the model performance
significantly. Further, we introduce a variant of smc which

we refer to as strong smc (s2mc) which selectively performs
joint inference to improve overall mismatch identification.

• We perform extensive experiments across multiple datasets
and show that the method we propose improves upon base-
line methods in performance by up to 12% increase in preci-
sion and 11% increase in F1 scores.

• We reformulate the resulting optimization problem which
enables us to perform near real-time inference using quasi-
Newton methods. Through a series of experiments, we show
that our approach is scalable and can be used to make real-
time predictions. Our approach of using a quasi-Newton
method yields up to 150X speedup over the existing solver
(ADMM).

The rest of the paper is organized as follows. In Section 2, we
formally set up the problem and discuss traditional solutions to
the problem. Next in Section 3, we introduce the concept of mi-
crographs, elaborate on them and show how they can be used in
our problem setting. In Section 4 we give some background on HL-
MRFs and PSL and in Section 5 we define our approach on using
micrographs to perform collective inference. Next, in Section 6, we
discuss the need for extremely fast inference and show how we can
efficiently make predictions using trust region Newton methods,
which yields orders-of-magnitude speedups over existing ADMM
solvers. We perform extensive experiments on multiple datasets
and their results in Section 7. Finally, we summarize and conclude
the paper in Section 8.

2 PROBLEM DEFINITION AND

TRADITIONAL APPROACH

Our task is to improve search results by identifying the products
whose facets do not match that of a query. In this section, we
formally define this task as facet mismatch classification and discuss
some traditional approaches to address this problem.

2.1 Facet mismatch classification

The facet mismatch classification is the general task of classifying a
(query, product) pair as matched (or relevant) along one or more
facets. Formally, we define facet mismatch classification for a single
facet as follows. Note that generalizing this definition for more than
one facet is straightforward.

Definition 2.1 (Facet mismatch classification). Consider a set of
all possible queries Q and a set of all possible products P. Given a
query q ∈ Q and a relevance modelM such thatM(q) = pq where
pq is a ranked list of products returned as relevant to the query q by
the modelM . Let f be a facet so that f (q) and f (piq ) are indicator
variables for the facet being present in the query, and the ith product
in pq . Then piq is a facet mismatch if γq,piq := 1(f (piq ) , f (q)) = 1,
where 1 is an indicator function.

2.2 Traditional approach

The above mentioned problem can be seen as a classification prob-
lem with a task of predicting γq,piq for any given (q,piq ) pair. As
facet mismatch is a more subtle classification problem than tradi-
tional relevance, one cannot simply use user logs and CTR to obtain
a dataset. The data available for training will contain pairs of (q,piq )
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along with a label γq,piq where the labels are typically annotated by
human curators. Human curation implies that the training datasets
are typically much smaller than standard ranking datasets.

Any binary (or multilabel) classifier such as logistic regression,
or deep neural networks [5] can be used to perform this task, with
the caveat of lending itself to fast online predictions. We refer to
using such traditional classifiers for performing facet mismatch clas-
sification as traditional mismatch classification (tmc). To be able to
handle low latency, one can perform this classification task using an
off-the-shelf industry workhorse model like Gradient Boosted Deci-
sion Tree (GBDT) [8, 12]. In particular, for search and information
retrieval systems, GBDTs have been shown to handle both categor-
ical and ordinal features with efficient training and fast real-time
inference [17]. The GBDT models trained in search applications
use a mix of text and behavioral features, depending on either the
query, product or both. A set of joint features (φ(q,piq )) is used to
make prediction on the facet mismatch classification problem:

ρq,piq = GBDT (φ(q,p
i
q )) (1)

In this work we use GBDT models as our tmc. In later sections we
show how we make use of this score (ρq,piq ) in our model. tmc uses
this score to determine whether there is a facet mismatch, i.e.,
γq,piq = 1(ρq,piq > t), where t ∈ (0, 1) is a threshold.

3 RELATIONAL STRUCTURE AND

MICROGRAPHS

The facet mismatch classification problem can also be seen as an
edge labeling problem on a graph. Consider z queries (q1 . . .qz ) and
j products (p1 . . .pj ) as nodes to the left and right side of a bipartite
graph (see Figure 1a, here z and j are set to four). The existence of
an edge between any query q and product p in this graph represents
either textual or behavioral match between a (query, product) pair
i.e., p ∈ pq . A solid edge between a (query, product) pair indicates
an observed mismatch (human annotated to zero or one) and dotted
edge indicates that the mismatch value need to be inferred. Our
goal here is to infer whether an edge is a mismatch or not given a
few edge labels. Consider an example query “black apple iphone”,
all “iphone” products match on the product-type facet and form
an edge to the query with value zero. Other product types such as
iphone cases and screen protectors have an edge to the query with
value one, as they do not match on the product type facet. The label
for some edges are known (manually labeled by human judges) and
our task is to use the existing edge labels to infer the labels for the
unknown edges.

While tmcs can be used to perform facet mismatch classification,
they suffer from a major drawback. They assume strong conditional
independence in the data (i.e., the value assigned for ρq,piq is condi-
tionally independent of other pairs in the data given q and piq ), and
predict the edge labels. This assumption makes inference very scal-
able. However, it completely ignores the relationship between the
query and the list of products for which we need to determine facet
mismatch. We depict these additional relationships in Figure 1b.
The edge between queries represents many possible relations, such
as semantic similarities between queries, query intent relation, and
so on. Similarly, the connection between products can be a lexical or

semantic similarity and co-purchase behavior. Further, the predic-
tions produced by tmc can also be represented as an edge between
(query,product) and can be used as preliminary mismatch scores.
The presence of additional edges makes the prediction task γq,piq
dependent on related products and queries. Therefore, a prediction
ρq,piq is no longer conditionally independent and joint predictions
have to be performed. For instance, if for some query q, γq,p1q = 1,
and p1q and p2q are connected to each other via a similarity edge,
then we’d expect γq,p2q = 1 This implies that the label assigned
for both the edges depend on each other and need to be predicted
jointly. This form of classification is commonly known as collective
classification [31].

There have been many approaches proposed in varied appli-
cations to perform collective classification [1, 20, 28, 31, 36]. The
primary issue with such methods is a large amount of time required
to perform inference as the complexity of the algorithm grows expo-
nentially in the number of nodes and relations. The heterogeneity
of the structural relationships adds to this complexity.

The models that perform collective classification are typically
transductive in nature, meaning we need to perform a full (graphical
model) inference for a given customer query at run-time. Further-
more, the queries themselves can be arbitrary and precomputing the
results and serving them at runtime is not possible. These reasons
have precluded the use of such methods for search and information
retrieval tasks. We show that by carefully constructing graphs, we
can perform inference at runtime. The idea is to break up the graph
so that we can perform inference over several smaller (query inde-
pendent) graphs in parallel. For this reason, we break up the graphs
per query and consider (query, product) and (product, product)
relationships. We refer to this smaller, more tractable graph as a
micrograph. Figure 1c shows an illustration. Formally, we define a
micrograph as follows:

Definition 3.1 (micrograph). A micrograph is a graph G , with the
vertices being a query q and the list of top-k products pq obtained
through a retrieval modelM(q). The edges in the graph correspond
to known (q,piq ) labels, and any product-product (piq ,p

j
q ) edges.

Typically, a customer does not scroll past a small number of items
in response to a query. Hence, we focus our attention to a small k
in the above definition, ∼ O(10). This allows us to use micrographs
with very small number of nodes, making it possible to perform
real-time inference.

In this work, we improve the predictions made by the tmcmodel
using these micrographs. We can generate query-product edges as
predicted by the tmc for any given (query,product) pair. However,
some of these edges may be of low-confidence, or in some cases
incorrect. There will also be edges between products, based on
co-purchases or semantic similarities which can be computed for
all product pairs. The task now is to perform a joint prediction
on facet mismatch edges between query and product using all the
above mentioned observed data in the micrograph.

Given these micrographs that encode different information in
the graph, the next step is to reason over this graph to improve
the facet mismatch score. We view this task as performing infer-
ence in a graphical model provided by the micrograph. A graphical
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Figure 1: The facet mismatch classification problem as a structure prediction problem. Black dotted edges represent unob-

served facet matches. A black solid edge represents an observed facet mismatch and has a value of zero or one. The prediction

task is to infer the values for the black dotted edges based on the available structural relationships (all other edges).

model created using the micrographs will contain observed ran-
dom variables as the observed edges in the micrograph and the
unobserved random variables to infer are the facet mismatch edge
between query and products. In Section 5, we elaborate smc and
s2mcwhich combine the micrograph information and perform joint
predictions through inference in a graphical model. We use PSL
framework to generate the graphical model and perform inference.
The PSL framework produces a specific type of graphical model
called the Hinge Loss Markov Random Field (HL-MRF) [3]. An ad-
vantage of HL-MRFs is that we can cast the HL-MRF inference as a
convex optimization program and use existing solvers to obtain an
exact solution. In the following section, we discuss a brief review
of HL-MRF and their relation to PSL.

4 HL-MRFS AND PSL

Probabilistic Soft Logic (PSL) [18] is a probabilistic programming
language which can be used to generate large and complex graph-
ical models. A model in PSL is defined through a set of weighted
first-order logical rules (template rules). A small set of template
rules when instantiated with data can generate large and complex
graphical models. A key capability of a rule based PSL model is
that they can efficiently combine multiple similarities and other
connections in data to perform collective reasoning. Each predi-
cate in a PSL rule, corresponds to a specific relation in the real
world. For instance, product similarities can be represented using a
predicate Similarity(P1, P2) where P1 and P2 are placeholders for
two products and a facet mismatch can be represented through a
predicate Mismatch(Q, P1) where Q is a placeholder for a query.
These predicates when instantiated with Q =“iPhone”, P1 =“white
iPhone case”, and P2 =“black iPhone case” generate ground pred-
icates Similarity(“white iPhone case”, “black iPhone case”) and
Mismatch(“iPhone”, “white iPhone case”). Each of these ground
predicates represents a random variable in a graphical model, some
are observed (Similarity) and some are unobserved (Mismatch).
Note that the Mismatch predicate could be partially observed as
well. Similarly, every template rule when grounded with data pro-
duce cliques in a graphical model. A model is thus fully instantiated

with data to produce all cliques of the graphical model. For example,
here is a simple rule to connect mismatch scores through similarity
edges:

w : Mismatch(Q, P1) ∧ Similar (P1, P2) → Mismatch(Q, P2)

wherew represents the importance or weight of the rule. When the
above rule is instantiated it creates a clique (w :Mismatch(“iPhone”,
“white iPhone case”) ∧ Similar (“white iPhone case”, “black iPhone
case”) →Mismatch(“iPhone”, “black iPhone case”)) with three ran-
dom variables (two unobserved and one observed). Collective in-
ference can be performed on this ground graphical model to make
joint predictions on the unobserved random variables. This makes
the processes of incorporating complex structure into a model easy
and interpretable.

A distinguishing trait of PSL is that the Boolean predicates are
relaxed to be continuous in range [0, 1]. This continuous relaxation
can be interpreted as a relaxation of logical MRFs [3]. Further, the
truth values can be also be seen as rounding probabilities of Boolean
predicates or a form of soft/fuzzy logic [3]. By viewing the ground
rules as soft logic statements, in specific Lukasiewicz Logic [19],
a potential associated with a clique generated by a ground logical
rule can be expressed as hinge-loss functions. For example, when
using Lukasiewicz Logic, a → b corresponds to the hinge function
max(a−b, 0) and a∧b corresponds tomax(a+b−1, 0). These hinge-
loss potentials form a special kind of graphical model called the HL-
MRF. As HL-MRFs are composed of continuous random variables
and hinge-loss potentials, they admit to efficient inference. Formally,
an HL-MRF defines a conditional probability density function over
unobserved random variables Y conditioned on observed random
variables X,

P(Y|X) ∝ exp
(
−

n∑
i=1

wiϕi (Y,X)
)

(2)

ϕi (Y,X) = (max{0, li (Y,X)})di ,di ∈ {1, 2} (3)

where ϕi is a hinge-loss potential function, li is a linear function
over Y, and X. The value of di determines if we want to use a hinge
or a squared hinge loss and in this paper we use the latter as it
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gives us added smoothness. The variables in X and Y are in the
unit interval [0, 1]. Eachwi ∈ R

+ represents the importance of that
specific potential which can be learned [4] or set manually, and
n represents the total number of potentials. Note that Equation 3
is log-concave in Y, so maximum a posteriori (MAP) inference to
find the optimal Y in HL-MRFs can be solved exactly via convex
optimization. The objective function is the following:

argmax
Y

P(Y|X) = argmin
Y

n∑
i=1

wiϕi (Y,X) (4)

The above expression is usually solved using alternating direction
method of multipliers (ADMM) [6] approach as described in [3].

5 STRUCTURED MISMATCH

CLASSIFICATION

We can represent all relationships in a micrograph using PSL and
create an HL-MRF to perform efficient inference at run-time. In this
section, we define the specific relations that were used to improve
facet mismatch classification. We begin by using the prediction
scores produced by a tmc for a particular (query, product) edge and
propagate this information to other related products. We construct
(product, product) edges using the semantic similarity between
them. We use latent representations of the products (based on their
meta-data) to compute the similarity score. Further, we distinguish
high-confidence scores to further improve the overall predictions
in the micrograph.

5.1 Using tmc predictions

In the transductive setting, where making a prediction requires an
inference step, we need a large set of edges with labeled data to use
in a graphical model [10]. However, as explained in the previous
sections, obtaining such large amounts of ground truth data is
expensive and time-consuming. Instead, one can use the output of
an existing discriminative model as the “seed” labels on the edges
of the graph. In particular we make use of the scores produced by
an underlying tmc, trained on existing ground truth information
as labels. The following rules encode the tmc scores:

tmc(Q, P) → Mismatch(Q, P) (5)
¬tmc(Q, P) → ¬Mismatch(Q, P) (6)

Mismatch(Q, P) ∈ [0, 1] is the target predicate to be inferred.
tmc(Q, P) ∈ [0, 1] is the prediction score produced by the tmc for
facet mismatch. The above rules incorporate the pairwise classifier
which encodes the signal from multiple behavioural and lexical
features of the query and product. Note that we can combine scores
from multiple classifiers in this way, creating an ensemble of mul-
tiple tmcs. We restrict ourselves to a single underlying classifier
here for ease of exposition. In our subsequent rules we make use of
additional information to improve the predictions.

5.2 Using product similarities

We can propagate the product scores to similar products to perform
joint inference. The primary idea is as follows: if a particular (query,
product) pair is a facet mismatch, then substitutable products should
also be a facet mismatch for the same query.

There are many ways of computing similarities between prod-
ucts, and an advantage of PSL is that it supports the use of multiple
similarity functions. Here, we make use of a latent product repre-
sentationsvp for a product p, and then use cosine similarity to form
the rules. Product representations are created by averaging word
embeddings of the title words, the latter of which is learned using
word2vec [27]. A similarity predicate can be created using the cosine
distance between two vectors, i.e., Similar (p1,p2) =

⟨vp1,vp2 ⟩
∥vp1 ∥ ∥vp2 ∥

.
Another common method for defining product similarities is via
collaborative filtering, where co-purchased or viewed items can
be seen to be similar to each other. We also tried rules that make
use of collaborative filtering in our model but did not see any im-
provements. The following rules are used to perform the collective
inference on theMismatch predicate:

Mismatch(Q, P1) ∧ Similar (P1, P2)

→ Mismatch(Q, P2) (7)
¬Mismatch(Q, P1) ∧ Similar (P1, P2)

→ ¬Mismatch(Q, P2) (8)

By combining the above rules with rules (5) and (6) we can gener-
ate an HL-MRF which incorporates micrographs to perform joint
predictions. We refer to this model as smc.

5.3 Incorporating Confidences into Mismatch

Detection

Propagating the right information in the micrograph is key to im-
proving the predictions of the model. Specifically, we want to be
able to boost the performance on (query, product) pairs where
the tmc cannot confidently predict whether there exists a facet
mismatch by propagating information from other (query, product)
pairs where the tmc has high confidence. To this end, we intro-
duce two new predicates called StronдMismatch and Stronдtmc. A
Stronдtmc prediction is one where the tmc score is above (below) a
prespecified threshold indicating amatch (mismatch). Stronдtmc(Q, P)
exists for all (query, product) pair for which the tmc(Q, P) > limU
or tmc(Q, P) < limL and limU , limL ∈ [0, 1]. To use these strong
predictors we introduce two more rules:

Stronдtmc(Q, P) → StronдMismatch(Q, P) (9)
¬Stronдtmc(Q, P) → ¬StronдMismatch(Q, P) (10)

StronдMismatch(Q, P) is a target predicate to infer. The above rules
tell our model to “trust” the tmc when the latter is confident in its
predictions.

It is important to note that the above rules are different from the
rules in the previous subsection (like (7) and (8)). Specifically, the
former rules incorporates all scores generated by the tmc using
behavioural and lexical features. While the rules (9) and (10) encode
an amount of “trust” in the underlying tmc: the query-product
pairs for which the confidence in the classification is high can be
used as an important signal to incorporate the structure.

The predictionsmade using tmc are usually good on the products
with strong behavioral data associated with them. However, such
information is absent on a majority of items, either due to lack of
user signals or bad product curation. The primary idea is to improve
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the predictions on these products by propagating information from
similar products where there is strong behavioral data.

Therefore, we propagate only the strong predictions only on
micrographs that have them, i.e., on a filtered set of queries. We con-
sider Stronдtmc scores and StronдMismatch for only those queries
that contain at least one product with a strong tmc prediction score
and one product without a strong tmc score. The mismatch values
for other queries are derived directly from tmc scores and are not
altered. We refer to this approach of propagating only the high
confidence score as strong smc (s2mc).

This targets queries for which there are products whose classifi-
cation can be improved by propagating scores. This can be encoded
using the following rules:

StronдMismatch(Q, P1) ∧ Similar (P1, P2)

→ StronдMismatch(Q, P2) (11)
¬StronдMismatch(Q, P1) ∧ Similar (P1, P2)

→ ¬StronдMismatch(Q, P2) (12)
The above rule states that only a strong prediction from tmc will
be propagated to similar products. Further, this information can be
propagated to (Mismatch) using the following rules:

StronдMismatch(Q, P) → Mismatch(Q, P) (13)
¬StronдMismatch(Q, P) → ¬Mismatch(Q, P) (14)

Eventually after performing inference ifMismatch(Q, P) > t then
the query-product pair is considered a mismatch.

5.4 Using prior as a regularizer

A prior rule is usually used to regularize the values. A negative
prior is usually placed on the target predicates Mismatch and
StonдMismatch. This is encoded in the following manner:

¬Mismatch(Q, P) (15)
The prior acts exactly like the priors in the Bayesian inference
literature. The negation in the prior is reasonable: since we expect
the majority of (query, product) pairs to be a match. Further, a
negative prior can also be seen as a L2 regularizer used in statistical
machine learning [3].

For our model, we use all the rules described so far. The weights
for each of these rules are learned through grid search. More details
about the learned weights are mentioned in Section 7.2. Further,
we use squared hinge-loss potentials for all our rules. To solve the
HL-MRF generated we derive and use a quasi-Newton (convex)
optimization approach discussed in the next section.

Note that the final output of the model we build will be Mis-
match(Q, P). The rules we define are to make sure that the value of
Mismatch(Q, P) is accurate, and ideally better than that returned
by the baseline tmc.

We round off this section with a representative example to ex-
plain the key idea. Consider the query q to be “black apple iphone”,
a popular product (p1q ) to be “black iphone case” which is falsely
associated with q, and a new product (p2q ) to be “golden iphone
case”, which is also falsely associated with the query. The objective
is to predict γq,p1q , and γq,p2q correctly as a facet mismatch. We train
a tmc that makes predictions on the facet mismatch values. Let
ρq,p1q = 1.0 and ρq,p2q = 0.5. In our approach, using rules (11) and

(12), we improve the γq,p2q by propagating ρq,p1q and jointly infer-
ring the valuesγq,p1q andγq,p2q . This results inγq,p1q = γq1,p2q = 1.0.

6 SCALABILITY

Wewant our proposed method to perform efficient inference at web
scale (i.e., each micrograph inference takes only a few milliseconds
or less). Typically, inference in HL-MRFs are solved using ADMM.
Although ADMM is scalable and can handle large datasets, it is not
fast enough in terms of convergence to meet the stringent latency
constraints of an e-commerce website. Of the many optimization
methods second order (Newton) methods are known to have the
fastest convergence. However, their per iteration cost increases
as the size of data increases. Since we deal with micrographs, for
the inference problem in (4) each micrograph can be solved inde-
pendently. This implies that the instantiated model is small and it
becomes feasible to use a quasi-Newton method. Specifically, we
use the trust-region Newton method (TRON) [16]. In this section,
we show that the optimization problem (4) is similar to that of
(squared) SVMs, which in turn enables us to use solvers based on
TRON [11].

To be able to use a quasi-Newton method we need to ensure that
our objective is strongly convex, however, (4) is not. We thus add
an L2 regularizer to the objective. The new objective function can
be written as:

f (Y) =
n∑
i=1

wiϕi (Y,X) + λ | |Y| |22 (16)

argmax
Y

P(Y|X) = argmin
Y

f (Y)

s .t .0 ≤ y ≤ 1,∀y ∈ Y

ϕi (Y,X) =max(li (Y,X), 0)2

where λ is a hyperparameter. Note that the regularizer effectively
replaces the prior rule for the model [3], and so the value for λ can
be the same value as the weight of the prior rule (15). We can write
the term li in the potential function ϕi as the following:

li (Y,X) = YT zi + ci (17)

where zi ∈ {1,−1}m is a vector that indicates which unobserved
random variables participate in the potential i ,m is the total num-
ber of unobserved random variables, and ci = XT z̃i , where z̃i ∈

{1,−1}m̃ is a vector that indicates which observed random vari-
ables participate in the potential i , m̃ is the total number of observed
random variables. The first derivative for the new objective can be
written as:

δ f (Y)
δY

= 2λY +
∑
i ∈S

2wi zi (YT zi + ci ) (18)

where S := {i ∈ 1, 2, . . .m, |YT zi > −ci }. The (generalized) Hes-
sian is given by,

δ2 f (Y)
δY2

= 2λI +
∑
i ∈S

2wiziz
T
i . (19)
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Using the first and second derivative (18 and 19) we can use
quasi-Newton methods to perform inference. This has two distinct
advantages over first order methods like ADMM:

• The number of iterations needed to converge to the optimal
value is often orders of magnitude lower.

• Each iteration of the ADMM method requires solving a set
of linear equations to convergence. In contrast, we only take
a few steps of conjugate gradient method to obtain an ap-
proximate solution. The approximate solution coupled with
the second order updates has shown to be highly successful
in practice [14]. This significantly reduces the per iteration
cost of the second order method.

We make use of the liblinear package [11]. The SVM objective
obtained for L2 regularized L2-loss in the primal form is very similar
to the Equation 17. Specifically, from (17) we see that the ci play
the role of a data-specific margin, while the “labels" for each point
can be seen to be −1. Concretely, we can rewrite (17) in the squared
SVM form as,

f (Y ) =
n∑
i=1

wimax(0, ci − (−1)YT (zi ))2 + λ∥Y ∥2. (20)

The only exception is the extra box constraint on Y which can be
easily enforced [23].

7 EMPIRICAL EVALUATION

In this section, we show the power of using micrographs to improve
facet mismatch classification. We use multiple sampled datasets to
evaluate our approach. First, we show that the TRON based method
we proposed (20) is up to 150x faster than the baseline ADMM
solver for the PSL, more specifically for facet mismatch classifica-
tion. We show that the rules we described earlier are indeed useful
and the performance of the classifier suffers when we omit these
rules. Finally, we compare and contrast various methods and show
that our proposed approach significantly outperforms the baseline
methods.

7.1 Datasets and Models

To evaluate our approach we use three datasets from a popular
product listing website where the user types a query and sees a
ranked list of products. We refer to these datasets as D1, D2, and
D3. The datasets correspond to (query, product) pairs shown to
the users, with other features obtained from search logs. The most
egregious form of facet mismatch is along the product type facet
(compared to brand, color, size, etc.) and we focus on that in this
paper. We used human annotators to obtain the ground truth data
for all our (query, product) pairs. If a (query, product) pair does not
match along the product type facet, the judge marks the pair as
mismatched. For example (“iphone x”, “iphone x case”) is a product
type mismatch and (“iphone x”, “iphone x refurbished”) is a product
type match. We have listed the dataset details in Table 1. We use the
human annotated labels to perform evaluation only, i.e., we consider
all variables generated by theMismatch and the StronдMismatch
predicates as unobserved. We use only aggregated and de-identified
information for our experiments (i.e., they do not include personally
identifying information about individuals in the dataset).

Table 1: Details for the three datasets we use. Even though

the dataset contains small number of queries, the query in-

dependent nature of our approach enables our results to

hold for even larger datasets.

Dataset Queries Products
D1 1194 7790
D2 149 866
D3 591 1959

Table 2: Different models and rules used to perform evalua-

tion.

Model name Rules used Weights for rules
(Equation number)

tmc 5 and 6 1 and 1
stmc 5, 6, and 15 1000, 1000, and 1
smc 5, 6, 7, 8, and 15 100, 100, 10, 10 and 1

s2mc 5, 6, 11, 12, 9, 10, 10, 10, 10, 1000,
10, 13, 14, and 15 1000, 100, 100 and 1

As mentioned earlier, we used tmc as our baseline model. Each
training data point is a (query, product) pair and the features in-
cluded were lexical (text similarity) and behavioral (likelihood of
click, add, and purchase). The target (or dependent variable) for
this model is binary indicating whether a specific (query, product)
pair is a facet mismatch or not. The tmc model was trained on a
human annotated dataset with ∼ 200K query-product pairs. We
compare this model to the smc models proposed in this paper. The
first model defined through PSL adds a prior to the tmc score to
regularize/smooth the values (using the prior rule), we refer to this
model as smoothed TMC (stmc). The next PSL model defined uses
the micrograph structure defined through product similarities to
propagate the tmc scores and perform a joint prediction on mis-
matches. We refer to this model as smc. The final model propagates
tmc scores only from high confidence edges through product simi-
larities and perform a joint prediction on mismatches, which we
refer to as s2mc. We describe the rules used by the models and their
weights in Table 2.

The weights mentioned here were obtained by performing a
grid search over a set of weight options using a train dataset. To
compute the similarities between products, we train a word2vec
model using about 30M product titles from the catalog of a popular
e-commerce website. Each product embedding is the average of the
word embeddings in the title.

We need to quantify the strength of strong mismatch using an
upper and lower limit on the tmc scores. Specifically, assume that
the classifier predicts the probability of a (query, product) pair be-
ing a match. Then, we need a threshold limU so that any score
above limU is a strong match and any score under a threshold
limL is a strong mismatch. At the limit point when limU = limL ,
all tmc scores are classified as strong predictions. While this may
increase the coverage of queries that have strong predictions, it
also decreases the quality of the scores used for propagation. At
this limit point, including strong mismatch is the same as the model
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Table 3: Number of queries that uses micrograph (Coverage) for different lower and upper limit.

limL 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15
limU 0.94 0.88 0.82 0.76 0.70 0.64 0.58 0.52 0.47 0.40 0.35 0.30 0.25 0.20 0.15

Coverage 0.96 0.90 0.83 0.78 0.73 0.69 0.64 0.60 0.58 0.54 0.50 0.43 0.36 0.24 0.00
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Figure 2: This figure shows the comparison of three models using tmc vs. stmc vs. s
2
mc on D1 with HSQ coverage 60%.

0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

Coverage

S
p
ee
d
U
p

D1

D2

D3

Figure 3: Speedup obtained by using TRON over ADMM at

performing inference. The speedup increases as coverage in-

creases andwe get a speedup of up to 150X on theD1 dataset.

defined using smc. Therefore, we choose to use strong predictions
to only those queries that contain at least one product with strong
prediction and one with weak prediction. The intuition being, a
strong prediction can be propagated to a weak prediction if the two
products are similar to improve the overall quality of the predic-
tions.

We denote the set of High Scoring Queries (HSQ) as queries that
are covered by the strong mismatch rules. In the sequel, the suf-
fix ‘HSQ’ on a model indicates the score obtained by considering
only such queries. Lack of a suffix means that we evaluate the
performance of the entire dataset. A key thing to note is that the
s2mcmodel uses micrographs for only the HSQs, whereas smc uses
micrograph on all queries.

As limL → limU , the number of HSQs will approach 0. We
refer to the fraction of HSQs and total queries as the “coverage”, as
these will be the queries that make use of micrograph to predict
facet mismatchusing the s2mc model. We show the different values

used for limU and limL and the corresponding coverage in Table 3.
Further, we use the PSL open source code1 to perform inference.

7.2 Experimental setup and evaluation

7.2.1 SPEEDUP FROM USING TRON.
We show that using TRON makes the s2mc run significantly faster
than ADMM.We run inference using both TRON and ADMM for all
queries in each dataset and report the speedup obtained. To perform
inference using TRON, we make minor changes to the open source
liblinear package [11] to adapt to the HL-MRF objective. To have a
fair comparison, we re-implemented ADMM for HL-MRF in C++.
We report the result of this experiment in Figure 3. As we increase
the coverage TRON is up to 150X faster than ADMM. The speedup
obtained is minimal when the coverage is 0, i.e., when we used only
tmc’s, and there are no micrographs that slow down ADMM. As
we start covering more queries, the speedup also increases. This
demonstrates why TRONmethods are powerful for online inference
when using micrographs, particularly, when we use s2mc. Further,
we also observe that when using TRON, per-query predictions time
averages to about 0.1 milliseconds.

7.2.2 IMPACT OF MICROGRAPHS.
The next question we want to answer is how much do micrographs
actually help, over and above the tmc predictions. Specifically, we
consider three cases for the dataset D1: using the tmc model, in-
cluding the prior (rule (15)) which we refer stmc, and s2mc. We
use the D1 dataset with HSQ coverage 60% 2. Figure 2 shows the
result obtained from this experiment. We observe that when tmc is
smoothed with some amount of regularization, there is no improve-
ment in the metrics. However, as we add the information from the
micrographs by using s2mc, we see a significant boost. We notice
about 7% increase in precision, 6% increase in F1. We also observe
similar boost in HSQs. tmc scores tend to be polar for products
with high behavioural information. Therefore, the improvement on
HSQs indicates that the predictions on products with lesser user
interactions (likely tail products) have been improved.
1http://psl.linqs.org/
2We will show in the sequel that this coverage value performs the best
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(a) D1 dataset.
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(b) D2 dataset.
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(c) D3 dataset.

Figure 4: This figure shows precision, recall and F1 for tmc, stmc, smc, and s
2
mc on three different datasets, D1 (top), D2

(middle) and D3 (bottom). We show the metrics for both HSQs and all queries included. Optimal performance is obtained

when s
2
mc used with threshold of 0.08 and 0.52 is used as lower and upper limit resulting in s

2
mc model affecting 60% of

queries.

7.2.3 COMPARISONS WITH MULTIPLE BASELINES.
Finally, we compare tmc, stmc, smc, and s2mc as described in Table
2 over multiple coverage values. Note that when coverage is 0,
s2mc uses no micrograph and alternatively, when coverage is 1
s2mc uses micrograph for all the queries. We intend to find out if
there’s a certain coverage value that maximizes performance. Note
that a higher coverage need not necessarily translate to higher
performance, since the underlying tmc model might have noisy
predictions, leading to noisy edges in the micrographs, in turn
leading to incorrect final predictions.

We report our findings in Figure 4. Here we observe that in all
datasets we see a clear improvement of precision and F1 in both the
HSQ and all queries, while keeping the recall relatively constant..

We observe up to 7% increase in precision for all queries in D1
dataset and about 6% increase in F1. We see a similar trend in other
datasets concerning precision and F1 with a maximum boost of 12%
in precision in D2. However, we do see a relatively small drop of
2% in recall in the D1 dataset and no drop in recall values in other
two datasets.

We also notice that as expected, the evaluation metrics for HSQ
in tmc is always lower than the overall value. Since HSQ contains at
least one product for which the tmc prediction score was not high.
This implies that there is at least one product for the query which
is more likely to be misclassified by tmc predictions alone. There-
fore, the overall HSQs are likely to have relatively more incorrect
tmc predictions than the average of all queries.
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We also observe that the dataset generated using limU = 0.52
and limL = 0.08 resulting in 60% coverage yields the maximum
improvement in both precision and F1. Another thing to note is that
we observe the metric values obtained using smc are almost the
same as that of tmc. Finally, we see that when micrographs are not
used at all (coverage = 0), the metric values are almost the same. The
slight difference is due to the regularization of the tmc predictions
and noise.

8 CONCLUSION AND FUTUREWORK

We showed in this paper that structural information can be used
to improve facet mismatch classification in modern e-commerce
search engines. We introduced the concept of a micrograph, that
can be used to incorporate additional structure between queries
and products, and reduced the problem to an inference of a graphi-
cal model using PSL. The methods we proposed yield impressive
gains over baseline methods. We also re-cast the problem with a
strongly convex objective, allowing us to use scalable second order
approaches and make the inference viable to real time vending of
search results. Through experiments, we show that our approach
achieves 150X speedup over existing solvers and up to 6% improve-
ment in terms of F1 score.

We hypothesize that incorporating the (query, query) edges in
our micrograph will improve the effectiveness of our approach even
further. However, keeping in mind the latency constraints of our
approach, we have not included them in this paper. As part of the
future work, we would like to explore incorporating this additional
information, while not loosing on the latency requirements.
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