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ABSTRACT
There is a great deal of research on ontology integration
which makes use of rich logical constraints to reason about
the structural and logical alignment of ontologies. There is
also considerable work on matching data instances from het-
erogeneous schema or ontologies. However, little work ex-
ploits the fact that ontologies include both data and struc-
ture. We aim to close this gap by presenting a new algo-
rithm (ILIADS) that tightly integrates both data matching
and logical reasoning to achieve better matching of ontolo-
gies. We evaluate our algorithm on a set of 30 pairs of OWL
Lite ontologies with the schema and data matchings found
by human reviewers. We compare against two systems -
the ontology matching tool FCA-merge [28] and the schema
matching tool COMA++ [1]. ILIADS shows an average
improvement of 25% in quality over FCA-merge and a 11%
improvement in recall over COMA++.

Categories and Subject Descriptors: I.2.4 Knowledge
Representation Formalisms and Methods: Semantic networks,
D.2.12 Interoperability: Data mapping

General Terms: Algorithms, Experimentation.

Keywords: Ontology alignment, schema mapping, data in-
tegration, logical inference, statistical inference.

1. INTRODUCTION
Ontologies are becoming more and more plentiful. On-

tologies model the structure of data (for example, repre-
senting sets of classes and their properties or attributes),
the semantics of data (in the form of axioms that express
constraints such as inheritance relationships, or constraints
on properties), and data instances (often called individuals).
To integrate ontologies, we must understand the relationship
between structures (classes and properties) and data (indi-
viduals) in different ontologies. Furthermore, we must be
able to use the semantics of the ontology to model these re-
lationships, and create a coherent and consistent integrated
ontology.
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Informally, the ontology alignment problem can be stated
as: given two ontologies O1 and O2, determine a set of re-
lationships (for example, subsumption and equivalence re-
lationships) between entities (classes, properties, and indi-
viduals) in the two ontologies. This in turn relates to the
integration problem: determine a new, consistent ontology
O (often called the integration witness) from the union of
O1 and O2.

The alignment and integration problems for ontologies are
closely related to the problems of schema mapping discov-
ery [18] and schema integration [3, 23]. To align and inte-
grate schemas, approaches usually use some form of schema
matching [24] to suggest the existence of possible relation-
ships between structural entities (classes/tables and prop-
erties/attributes/elements). However, in the case of ontolo-
gies, we additionally need to use data matching (to match
individuals modeled in both ontologies) [20]. Matches are
used to create (logical) mappings that represent the seman-
tics of relationships (for example, subsumption or equiva-
lence) [13]. A final step is to use the mappings to create an
integrated schema [3, 23] or ontology [28]. Both mapping
creation and integration make use of logical reasoning over
the constraints in the schemas or ontologies [22, 12].

In our work, we combine the statistical learning used for
matching with the logical inference traditionally used in
mapping discovery and integration. Specifically, we com-
bine a flexible similarity matching algorithm with an incre-
mental logical inference algorithm which reasons about the
consequences of learned alignment relationships. The simi-
larity matching algorithm uses lexical, structural and extent
information; in addition, it uses an estimate of the logical
consequences to determine the similarity of entities (classes,
properties, and individuals). Like other similarity-based ap-
proaches for matching [17, 5], similarity is propagated in-
crementally; however our approach is based on a clustering
algorithm which considers relationships among sets of equiv-
alent entities, rather than individual pairs of entities.

The logical reasoning and statistical reasoning are tightly
integrated: a matching step is followed by a constrained set
of logical inferences (constrained to keep the computational
expense feasible); the logical inferences inform the matching
by influencing the matching statistics. In the end, our ap-
proach results in an integrated ontology. Because we do not
use complete logical inference at each step, we may produce
an inconsistent ontology. However, we show that in prac-
tice, our efficient, (but incomplete), inference is sufficient to
produce a consistent integration in almost all cases.

In this paper, we make the following contributions. First,
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we present a novel integration approach that tightly cou-
ples statistical and logical inference. We present and eval-
uate several alternative strategies for selecting matches and
for selecting logical inferences, and show how they can be
used collectively in integration. Second, we introduce the
ILIADS system (Integrated Learning In Alignment of Data
and Schema) that integrates ontologies represented in OWL
Lite. We pay particular attention to developing a system
that is flexible enough to produce high accuracy results for
real-world heterogeneous ontologies. Finally, we present an
extensive evaluation of our algorithm on a set of 30 pairs
of OWL Lite ontologies. We compare against two well-
known ontology integration systems – FCA-merge [28] and
COMA++ [1]. We show that the integration of logical and
statistical inference in ILIADS leads to higher accuracy and
recall. We also investigate the correlation between the best
way to compute similarity and various structural features of
real-world ontologies.

2. A BRIEF OVERVIEW OF OWL LITE
We start by giving a short overview of OWL Lite. The full

description of the language syntax and semantics is available
at http://www.w3.org/TR/owl-ref/. The Web Ontology
Language (OWL) was designed to offer support for publish-
ing and sharing ontologies on the World Wide Web. OWL

is available in three different dialects; here we focus on the
simplest dialect OWL Lite. Although it is the least com-
plex of the three, problems in OWL Lite are quite difficult.
For instance, the conjunctive query answering problem is
2EXPTIME-complete in the worst case. Despite this nega-
tive theoretical result, the majority of real world ontologies
are tractable – reasoning problems can be solved in polyno-
mial time.

An OWL Lite ontology consists of several sets of enti-
ties: classes, properties, individuals, data values, triples and
axioms. We will illustrate each on the two example OWL

Lite ontologies in Figure 1. The example in Figure 1(a)
is a subset of the disease ontology available from http:

//diseaseontology.sourceforge.net/ re-written in OWL

Lite; the ontology in Figure 1(b) is a subset of an ontology
manually extracted from www.wrongdiagnosis.com, a web-
site that provides medical-related information to the general
public based on a set of templates (i.e., a schema). The two
ontologies use part of the same URI namespace, hence some
entities with the same node labels (such as Condition) are
in fact identical in both. This type of reuse is common prac-
tice in the set of 30 pairs of ontologies we have examined.
To improve the readability of the figures, we omit the URI
namespace prefixes.

In OWL Lite, classes are used to model sets of entities
with common characteristics. For instance, BacterialInfec-
tion models the set of medical conditions that are caused by
bacteria and manifest themselves as infections. Similarly,
the Pathogen class models the set of organisms that cause
diseases. OWL Lite provides a number of ways in which
a class can be defined other than by simply declaring it;
among these, a class can be defined as an intersection of
other classes or based on a restriction (e.g., a value or car-
dinality restriction). We use C to denote the set of classes
in an ontology.

Individuals (or instances) are elements of the set modeled
by a class. For instance, the fact that D. Salmon is an in-
dividual of type Person is depicted graphically by the edge

(D.Salmon, rdf:type, Person) in Figure 1(b). rdf:type is a
reserved keyword in OWL which denotes that an individual
is an instance of given class. Note that in Figure 1, individ-
uals are represented by square nodes and classes by round
nodes. The set of instances belonging to a class is called
the extension of that class. For example, in Figure 1(a), the
extension of class Person is {TheodorEsterich, DanielElm-
erSalmon}. We use I to denote the set of individuals in an
ontology. For a given class c ∈ C use ǫ(c) to denote the set
of individuals in the extension of c.

Data values are values of one of the primitive types al-
lowed by XML Schema1. In Figure 1(a), 73,000 and 40,000
are examples of data values of type unsigned integer. We
use T to denote the set of all primitive data types (e.g.
xsd:integer, xsd:string, etc.) and D to denote the set of all
possible data values of types in T .

A property is used to specify relationships between two
individuals or between an individual and a data value. The
set of properties in Figure 1 includes among others discov-
eredBy, averageCases and associatedWith. The edge (E-
ColiPoisoning, riskFactor, Gastroenteritis) states that the
individual Gastroenteritis of class BacterialInfection is a risk
factor of the individual E-ColiPoisoning. Similarly, the edge
(E-ColiPoisoning, averageCases, 73,000) states that there
are approximately 73,000 cases of E-Coli food poisoning in
the US every year. Note that the meaning of a property
may not always be evident from its label (in this case, a
more appropriate label would be annualAverageCasesUS).
Ontology creators generally address this problem by giving
comments on what a property or class means. In this paper,
do not make use of such metadata. We use P to denote the
set of properties in an ontology. This includes predefined
OWL properties such as owl:sameAs, which states the two
individuals are semantically identical, and owl:differentFrom

which states two individuals are different.
All information in OWL is generally expressed in the form

of a triple. In this discussion, we limit the meaning of the
term triple (or fact) to include only relationships between
an individual and a class, an individual or a data value.
Examples of triples include (Botulism, rdf:type, FoodPoi-
soning), (E-ColiPoisoning, averageCases, 73000) and (E-
ColiPosoning, discoveredBy, TheodorEscherich), but not (Vi-
ralInfection, rdfs:subClassOf, Infection)2. In this discussion,
the latter will be categorized as an axiom. We will use F to
denote the set of triples in an ontology. For a given property
p ∈ P, we define the extension of p as µ(p) = {(X, Y )|X ∈
I, Y ∈ I ∪D∪C, (X, p, Y ) ∈ F}. We will refer to |F| as the
size of an ontology.

Axioms provide much of the expressive power of OWL

Lite. The axioms for our two ontologies are shown at the
bottom of Figure 1. As we mentioned before, the two on-
tologies share parts of their schema, including the axiom
(discoveredBy, owl:inverseOf, discovered). This axiom states
that the discoveredBy property is an inverse of discovered
– which means that for each triple (X, discoveredBy, Y) in
the ontology, we can infer (Y, discovered, X). We present a
few types of axioms permitted in OWL Lite (more details
are provided in Section 5):

• (c, rdfs:subClassOf, c′) states that class c is a subclass

1http://www.w3.org/XML/Schema.
2In Figure 1, we omit the rdfs prefix from rdfs:subClassOf for
the sake of readability.
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Figure 1: Two example OWL Lite ontologies

of class c′. From this, we can infer that ǫ(c) ⊆ ǫ(c′).

• (p, owl:type, owl:FunctionalProperty) states that p is
a functional property, hence (X, Y ), (X, Z) ∈ µ(p) ⇒
Y = Z.

• (p, owl:inverseOf, p′) states that p is an inverse of p′,
hence (X, Y ) ∈ µ(p) ⇒ (Y, X) ∈ µ(p′) and (X ′, Y ′) ∈
µ(p′) ⇒ (Y ′, X ′) ∈ µ(p).

In this paper, we address the problem of integrating two
consistent OWL-Lite ontologies O1, O2 into a single, con-
sistent output ontology O. Therefore, from the various
reasoning problems in OWL-Lite3, we are particularly inter-
ested in the problem of determining whether an ontology is
consistent. Horrocks et al. [10] have shown that OWL-Lite
is equivalent to the logic SHIF(D) and provided a formal
model theoretic semantics for the language. Formally, an
OWL-Lite ontology is consistent if there exists a satisfying
interpretation for the ontology. For instance, an ontology
from which we can infer that (x, owl:differentFrom,y) and
(x, owl:sameAs, y) at the same time cannot have a satisfy-
ing interpretation. We use the Pellet[27] implementation of
the tableaux algorithm of Horocks et al.[11] to verify whether
the result of integrating the input ontologies O1, O2 is con-
sistent.

3. ONTOLOGY INTEGRATION
Let O1 and O2 be two OWL Lite ontologies. The align-

ment problem is that of finding a set of axioms and facts
A∗ on O1 ∪ O2 that link entities in O1 and O2. Specif-
ically, we are looking for axioms that specify subsumption
and equivalence between classes and properties and for facts
that specify equality between individuals. In addition, the
integration problem requires that adding the axioms in A∗

to O1 ∪ O2 produces a consistent ontology.
3See http://www.w3.org/Submission/owl11-tractable/
for a complete list.

Example 1 (Alignment). For the ontologies depicted
in Figure 1(a) and (b), the following set of axioms and facts
gives a possible (but clearly incomplete) integration:
(FoodPoisoning, rdfs:subClassOf, FoodBorneDisease)
(Bacterial, owl:equivalentClass, Bacteria)
(resultsFrom, rdfs:subPropertyOf, riskFactor)
(E-ColiPoisoning, owl:sameAs, E-Coli)
(EscherichiaColiO157 : H7, owl:sameAs, EColiO157 : H7)
(TheodorEscherich, owl:sameAs, T.S.Esherich)

We introduce a powerful framework that combines the flex-
ibility of approximate matching for finding equivalence and
subsumption candidates with the power of logical inference
to determine the consequences of the new alignments. Like
many systems, our matching algorithms use a combination
of lexical, structural and extent information. However our
algorithm is unique in the tight integration of the statisti-
cal matching algorithm with logical inference. This leads
to a system which uses the full power of data and schema
integration to construct consistent integrated ontologies.

Our Integrated Learning In Alignment of Data and Schema
(ILIADS) algorithm is based on an interleaving of a hierar-
chical clustering algorithm with an incremental logical infer-
ence algorithm. Clustering entities creates new relationships
among the entities; these new relationships may have logical
consequences in OWL Lite. For example, consider the union
of the two ontologies in Figure 1. Adding the relationship
(EColi-Poisoning, owl:sameAs, E-Coli), in conjunction with
the existing axioms (discoveredBy, owl:inverseOf, discoverer)
and (discoveredBy, owl:type, owl:FunctionalProperty) logically
implies that (TheodorEscherich, owl:sameAs, T.S. Escherich).
Furthermore, the results of the logical inference process af-
ter adding an integration axiom need to be used to update
the similarity score of other relationships. Figure 2 shows
an outline of the main ontology integration algorithm. In
the algorithm, we repeatedly find candidate clusters of simi-
lar entities, add an equivalence or subsumption relationship
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Algorithm ILIADS(O1, O2)
Input: Consistent ontologies O1 and O2.
Output: Alignment A∗ of O1 and O2 such that the integration

of O1 and O2 under A∗ is consistent.
1: Compute O ← O1 ∪O2, A∗ ← ∅
2: Initialize each cluster c with an e ∈ C ∪ P ∪ I
3: Merge clusters containing equivalent entities and add appro-

priate equivalence axioms to O
4: repeat

5: Heuristically select a type of clusters (from {classes, in-
stances, properties})

6: Let G be the set of all clusters of that type
7: for (c, c′) ∈ G×G do

8: Determine candidate relationship a(c,c′)

9: Perform incremental inference,
Oc,c′ ← IncrementalInference(O, ac,c′ )

10: Compute siminf (c, c′) based on Oc,c′ .
11: end for

12: Choose ac,c′ with the highest siminf (c, c′) score.
13: O ← Oc,c′ , A∗ ← A∗ ∪ {ac,c′}
14: until no more candidate clusters
15: return A∗

Figure 2: The main ILIADS algorithm

between the sets of entities, determine the logical conse-
quences of the new relationship and update the similarities
between remaining clusters. Note that the relationship be-
tween candidates for alignment (line 8) is expressed as an
OWL axiom (for instance, equivalence between two proper-
ties is expressed as (p, owl:equivalentProperty, p′)) or as a
owl:sameAs fact (only for equivalences between instances)
and then added to the ontology. We provide more detail
about the process of creating axioms and facts from align-
ment candidates in Section 4.2. In the following subsections,
we give details on the two main components: the statistical
matching and the incremental logical inference.

4. CLUSTERING ALGORITHM
Our statistical inference uses a hierarchical agglomerative

clustering algorithm to select candidate clusters to link in
the ontologies. During this process, we form separate clus-
terings over the set of classes, over the set of individuals,
and over the set of properties. Notably, the clustering pro-
cess for all entities (classes, individuals and properties), is
influenced by the current clustering for other types of enti-
ties. For example, in determining whether to merge two sets
(clusters) of individuals, we consider not only their proper-
ties, but also possibly inferences we can make about those
properties based on the current clustering of properties (and
similarly for classes).

An important component of any clustering algorithm is
the computation of the similarity between clusters. We start
by describing the similarity measures for entities and sets
of entities in Section 4.1. Then we describe our method
for choosing between subsumption and equivalence of can-
didates clusters in Section 4.2.

4.1 Similarity measures
Deciding on a set of integration axioms and facts means

we have to express how “similar” we believe a pair of candi-
date entities are based on their lexical, semantic and graph-
structural information. The similarity score is based on
three components: (i) the lexical score handles lexical sim-
ilarities between names (or URIs), (ii) the structural score

models how similar the neighboring nodes of the two entities
are and (iii) the extensional score models similarity between
the ǫ and µ values of entities being compared. For a pair
of entities e1, e2 we express the similarity score as a linear
combination of these three components:

sim(e1, e2) =

λxsimlex(e1, e2) + λssimstruct(e1, e2) + λesimext(e1, e2)

We do not assume that the λ parameters should be the same
for classes, properties and instances; we will denote the λ pa-
rameters for classes, properties and individuals respectively
with a c, p, i upper index. This gives us a set of nine param-
eters for measuring similarity; here, we consider λ ∈ [0, 1].
We will discuss how the λ are chosen in Section 7.

4.1.1 Lexical Similarity
There are a variety of string similarity measures that are

commonly used [4]; we used Jaro-Winkler[29] because em-
pirically it provides the best answer quality for our dataset.
In addition, for low Jaro-Winkler scores, WordNet is used
to determine potential synonymity between entity names;
we then assign a similarity score based on which synonym
set the pair belongs to (synsets are ordered in WordNet by
frequency of use). For class and properties, we use the max-
imum of Jaro-Winkler and WordNet. For instances, Word-
Net similarity is ineffective, because the names are typically
not part of the WordNet lexicon.

4.1.2 Structural Similarity
To compute the structural similarity of two classes c1, c2,

we consider the Jaccard distance between their sets of neigh-
bors in the rdfs:subClassOf hierarchy. For two sets S1, S2, the

Jaccard distance is defined as Jaccard(S1, S2) = |S1∩S2|
|S1∪S2|

In

our experimental evaluation, we looked at subclasses and
superclasses at various distances from c1, c2, and obtained
the best answer quality for neighborhoods of distance4 2.
Neighborhoods of distance 1 do not account for potential
differences in the level of specificity in the two ontologies,
whereas neighborhoods of distance 3 or more contain ele-
ments too far removed from the target classes. We also
tried using the Jaccard distance on the sets of properties in-
cident to the two classes (for instance, in Figure 1(a), risk-
Factor is incident to FoodPoisoning, since it is incident to
E-ColiPoisoning, an instance of FoodPoisoning). This lat-
ter measure did not yield a good answer quality during the
experimental evaluation.

For properties, the structural similarity is based on their
rdfs:subPropertyOf neighborhood. In this case, we found ex-
perimentally that axioms about properties played an im-
portant part in determining similarity. As described in Sec-
tion 2, a property can have the features transitive, func-
tional, symmetric or inverse functional. Let Hp be the set
of features of a property p. We define simfeatures(p1, p2) =
Jaccard(Hp1

, Hp2
). We multiply the Jaccard distance be-

tween the rdfs:subPropertyOf neighborhoods with simfeatures

to obtain the similarity score between two properties.
Finally, to compute the structural similarity for two in-

stances e1, e2 ∈ I, we compute the Jaccard distance between
the sets of pairs (p, Y ) such that (ei p Y ) ∈ F . Experi-
mentally, we found that using structural similarity counter-

4The maximum number of edges between the target node
and a node in the neighborhood.
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Table 1: Summary of the component similarity measures
simlex simstruct simext

Classes Jaro-Winkler/ Wordnet. Jaccard on rdfs:subClassOf neighbors. Jaccard on set of instances.

Properties Jaro-Winkler/ Wordnet.
Jaccard on rdfs:subPropertyOf neigh-
bors multiplied by simfeatures.

Jaccard on set of (X, Y ) pairs in prop-
erty extension.

Instances Jaro-Winkler.
Jaccard on sets of incident (p, Y )
pairs.

0

balances the ineffectiveness of lexical similarity for proper
names. In fact, ILIADS missed very few alignments be-
tween proper names (see Section 7).

4.1.3 Extensional Similarity
The extensional similarity for classes and properties is also

computed using Jaccard similarity. For example, the exten-
sional similarity of two classes c1 and c2 is Jaccard(ǫ(c1), ǫ(c2)).
The extensional similarity of properties is defined in terms
of their µ values. There is no extensional similarity for in-
stances. Table 1 summarizes the component similarity mea-
sures used for classes, properties and instances.

4.1.4 Cluster Similarity
Given a similarity score between two entities, it can be

extended to clusters of entities C1 and C2 in one of the
following standard ways:

1. Single link: sim(C1, C2) = min
e1∈C1,e2∈C2

(sim(e1, e2)).

2. Complete link: sim(C1, C2) = max
e1∈C1,e2∈E2

(sim(e1, e2))

3. Average link: sim(C1, C2) =

P

e1∈C1

P

e1∈C2

sim(e1,e2)

|C1|×|C2|

Note that the cluster similarity measures are linear in the
product of |C1| · |C2|. We have found empirically that clus-
ter sizes in our ontology dataset are relatively small, hence
the computation of cluster similarity scores does not have a
great impact on the running time of the algorithm.

4.2 Determining Cluster Relationships
Whenever we consider a pair of classes or properties for

clustering, we need to decide whether they should be in a
subsumption or an equivalence relationship (line 8, Figure
2). We use a simple decision procedure that we found ef-
fective in practice to determine the relationship. We will
exemplify the decision process on classes, but it applies to
properties in the same form. In the following, let c1, c2 ∈ C
be two classes. Let λr ∈ [0, 1] be an arbitrary, but fixed
threshold value.

1. If |ǫ(c1)−ǫ(c2)|
|ǫ(c1)|

< λr and |ǫ(c2)−ǫ(c1)|
|ǫ(c2)|

≥ λr, then con-

sider the axiom (c1, rdfs:subClassOf, c2).

2. If |ǫ(c1)−ǫ(c2)|
|ǫ(c1)|

≥ λr and |ǫ(c2)−ǫ(c1)|
|ǫ(c2)|

< λr, then con-

sider the axiom (c2, rdfs:subClassOf, c1).

3. Otherwise consider the axiom (c1, owl:equivalentClass, c2).

Intuitively, this set of rules states that if the set of in-
stances of ǫ(c1) is “almost” a subset of the set of instances
ǫ(c2), then we should consider a subsumption relation (c1,
rdfs:subClassOf, c2). The threshold value λr determines how
many of the instances of c1 should also be instances of c2. In
our experiments we have determined that a value λr = 0.2
provides the best answer quality. Note that this method

can also be applied to clusters of classes C ⊆ C by defining
ǫ(C) = ∪c∈C ǫ(c) and similarly to clusters of properties.

Example 2. Consider the two ontologies in Figure 1 and
the candidate pair (FoodPoisoning, FoodBorneDisease). Then

|ǫ(FoodPoisoning) − ǫ(FoodBorneDisease)| = 1

|ǫ(FoodBorneDisease) − ǫ(FoodPoisoning)| = 2

|ǫ(FoodPoisoning)| = 3

|ǫ(FoodBorneDisease)| = 4

If λr = .5 we would consider the relationship (FoodPoi-
soning, rdfs:subClassOf, FoodBorneDisease). However, if
λr = .7, we would consider the relationship (FoodPoison-
ing, owl:equivalentClass, FoodBorneDisease)

5. INCREMENTAL LOGICAL INFERENCE
In ILIADS, to evaluate whether or not to merge two clus-

ters, we need to test the effect such a merge would have on
the alignment. We do this by modeling the merged cluster
using a new axiom in the ontology (for example, a new ax-
iom asserting the equivalence of classes). Hence, we need to
perform inference, but we also need to control the order in
which axioms are applied (something that most out-of-the-
box OWL reasoners do not permit).

Therefore, instead of using an existing reasoner, we in-
troduce an incremental logical inference algorithm based on
the tableaux method which incrementally goes through the
inference process up to a maximum number of steps. We
point out that all OWL reasoning algorithms, including the
one used by ILIADS are variations of the tableaux method.
The two key differences between inference in ILIADS and
existing reasoners such as Pellet are that our algorithm (i)
only executes a constant number N of inference rules and
(ii) it uses heuristics to select from the set of applicable rules
a single rule to apply at each step. The analytical tableaux
method can be applied to OWL Lite by looking at axioms
as inference rules. For example, the owl:FunctionalProperty

rule could be written as:

{(X,p,Y ),(X,p,Y ′),(p,owl:type,owl:FunctionalProperty)}
{(Y,owl:sameAs,Y ′)}

The other inference rules are:

{(c,rdfs:subClassOf,d),(X,rdf:type,c)}
{(X,rdf:type,d)}

{(c,owl:equivalentClass,d),(X,rdf:type,c)}
{(X,rdf:type,d)}

{(p,owl:equivalentProperty,q),(X,p,Y )}
{(X,q,Y )}

{(X,p,Y ),(p,rdfs:subPropertyOf,q)}
{(X,q,Y )}

{(X,p,Y ),(Y,p,Z),(p,owl:type,owl:TransitiveProperty)}
{(X,p,Z)}

{(X,p,Y ),(X′,p,Y ),(p,owl:type,owl:InverseFunctionalProperty)}
{(X,owl:sameAs,X′)}

{(X,p,Y ),(p,owl:type,owl:SymmetricProperty)}
{(Y,p,X)}
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The algorithm is described in Figure 3. For reasons of
space, we omit the set of rules by which we check for incon-
sistencies. A simple example is:

{(X,owl:sameAs,Y ),(X,owl:differentFrom,Y )}
⊥

Other possible reasons for inconsistency in OWL Lite in-
clude violations of class restrictions and unsatisfiable con-
cepts. Note that we only check for inconsistencies that oc-
cur during a limited number of inference steps, hence the
approach is not sound.

Example 3. In the ontology in Figure 1(a), from the triple
(Botulism, rdf:type, FoodPoisoning), by applying the axiom
(FoodPoisoning, rdfs:subClassOf, BacterialInfection) we can
infer that (Botulism, rdf:type, BacterialInfection). Simi-
larly, from the triple (E-Coli, resultsFrom, AcuteGastro-
enteritis), and the axiom (resultsFrom, rdfs:subPropertyOf,
associatedWith), we infer that (E-Coli, associatedWith, Acute-
Gastroenteritis). Note that in both cases above, we increased
our knowledge about the class and property extensions ǫ and
µ. In the former case, we discovered that Botulism ∈ ǫ(Bacte-
rialInfection) and in the latter we discovered that (E-Coli
Poisoning, Gastroenteritis) ∈ µ(associatedWith).

Algorithm IncrementalInference(O, a)
Input:

O — the ontology we perform inference on.
a — the current candidate relationship (e.g.,
(C1, owl:equivalentClass, C2)).
N — the number of inference steps to take.

Output:

Ontology O′ obtained from O ∪ {a} after N inference steps
1: O.A ← O.A ∪ {a}, O′ ← O
2: for i = 1 to N do

3: Heuristically select an axiom a′ ∈ A, a′ 6= a
4: Apply the rule for a′ on O′

5: if there is an inconsistency then

6: return FAIL
7: end if

8: end for

9: return O′

Figure 3: The Incremental Logical Inference algo-
rithm

Let O′
i denote the ontology O′ at the beginning of step

i of the algorithm. For most axioms, each inference step
i is linear in the size of O′

i. Also, the size of O′
i+1 is at

most double the size of O′
i. However, in order to apply

the rules for owl:TransitiveProperty, owl:FunctionalProperty

and owl:InverseFunctionalProperty axioms, we need to iter-
ate through all pairs of triples in F ×F . Step i of the algo-
rithm is therefore quadratic in the size of O′

i. Assuming that
the initial ontology is consistent, the incremental algorithm
above is also complete for N → ∞. Note that the num-
ber of facts in the ontology is increasing monotonically, and
the number of facts that can be inferred with the entities in
the initial ontology is finite. Hence, for large enough values
of N , the IncrementalInference algorithm will eventually
reach a fixpoint at step i, when independently of the axiom
a′ chosen on line 4, O′

i+1 = O′
i.

In conjunction with the main algorithm in Figure 2, we
observe the following:

1. IncrementalInference always increases the number
of facts in the ontology, but keeps the number of ax-
ioms constant.

2. The clustering algorithm:

(a) Decreases the number of clusters at each itera-
tion.

(b) Adds axioms or facts to the ontology as the result
of merging two clusters.

Since both the number of facts and the number of axioms
that can be expressed with the entities and data values in
the ontology is finite, the main algorithm in Figure 2 is guar-
anteed to terminate.

If an inconsistency is found while computing the new val-
ues of ǫ, µ, we return FAIL. Note that this approach is not
sound, since we do not check consistency for the entire on-
tology (a very time consuming process). However, in our ex-
perimental evaluation the algorithm produced inconsistent
ontologies less than .5% of the time.

5.1 Logical Inference Similarity
After computing the results of IncrementalInference,

the main algorithm in Figure 2 computes the logical infer-
ence similarity score of the candidate clusters. This value
is obtained by multiplying the initial similarity score be-
tween the two clusters with a factor that summarizes the
effects of the inference process. Let Q be the set of en-
tity pairs that have become equivalent after executing In-
crementalInference. The inference similarity factor is f =

Π
(e,e′)∈Q

sim(e,e′)
1−sim(e,e′)

.

Let c, c′ be a pair of clusters with similarity (before infer-
ence) sim(c, c′). Then the logical inference similarity score
for c, c′ is defined as siminf (c, c′) = min(f · sim(c, c′), 1).
The intuition behind computing this score is the follow-
ing: if we can logically infer from a candidate relationship

ac,c′ equivalences that are probable ( sim(e,e′)
1−sim(e,e′)

> 1), we

are more inclined to believe ac,c′ is a good alignment. On
the other hand, if ac,c′ implies equivalences that are un-

likely ( sim(e,e′)
1−sim(e,e′)

< 1), its similarity score will decrease.

Note that f · sim(c, c′) is not guaranteed to be lower than
1 because f cannot be normalized w.r.t. sim(c, c′) without
reaching a fixpoint in IncrementalInference; to normalize
f , we need to know all possible consequences of adding ac,c′

to the ontology.

Example 4 (Inference Similarity). Consider the two
ontologies in Figure 1. Assume that the candidate axiom
is (E-ColiPoisoning, owl:sameAs, E-Coli), the initial simi-
larity score is .5 and N = 2. Also assume that the initial
similarity score sim(TheodorEscherich, T.S.Escherich) = .6.
The axiom selection process will heuristically select an ax-
iom for each of the two steps of inference (the process is
detailed in Section 6). For now let’s assume that the ax-
iom in the first step is (discoveredBy, owl:inverseOf, discov-
erer). Applying this axiom will add the pair (E-Coli, dis-
coveredBy, T.S.Escherich) to µ(discoveredBy) (among oth-
ers). Note that no new equivalence relations appear in this
step, hence we move to the second inference step and the
axiom (discoveredBy, owl:type, owl:FunctionalProperty). Ap-
plying this axiom to (E-ColiPoisoning, owl:sameAs, E-Coli),
(E-ColiPoisoning, discoveredBy, TheodorEscherich) and (E-
Coli, discoveredBy, T.S.Escherich), we obtain (Theodor Es-
cherich, owl:sameAs, T.S.Escherich). The similarity score
for the two Escherich nodes is .6

.4
= 1.5, hence the new score
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will become .5 · 1.5 = .75. The similarity between the two
representations of the name of Theodor Escherich strength-
ens our belief in the equivalence between the two forms of
the E-coli food poisoning condition.
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Figure 4: Alignment results for the two example
OWL Lite ontologies.

6. HEURISTIC SELECTION POLICIES
The ILIADS algorithm (Figure 2) contains two heuristic

steps that we have not yet explained. First, in line 9, when
we perform IncrementalInference, we are given a new can-
didate relationship a(c,c′). For the inference, we want to se-
lect an axiom a′, apply N steps of inference and return the
updated ontology (called O(c,c′) in Figure 2). Our guiding
heuristic principle will be to select an axiom that produces
equivalence relationships to be used in the inference simi-
larity score. Second, in the clustering process (lines 5–6 of
Figure 2), we select a subset of clusters (all clusters of type
class, or all clusters of type individual, or all clusters of type
property) from which a candidate pair to be merged will be
chosen. We explain these two heuristic steps next.

6.1 Axiom Selection
Selecting an axiom that maximizes the chances of obtain-

ing equivalence relationships requires two steps: (i) selecting
a subgroup of candidate axioms A0 and (ii) selecting a can-
didate from the group in the previous step. We have used
the following rules to select groups of axioms:

(AR1) If the relationship a involves classes C, C′, then add
to A0 any axiom that either (i) involves C or C′ OR
(ii) involves any property p adjacent to an individual
X ∈ ǫ(C) ∪ ǫ(C′). Informally, this rule states that we
should select only those axioms that are related to C

or C′ either directly or through their extensions.

(AR2) If the relationship a involves properties p, p′ then add
to A0 any axiom that contains either p or p′.

(AR3) If the relationship a involves individuals X, X ′, then
add to A0 any axiom the contains: (i) a class C such
that X ∈ ǫ(C) or X ′ ∈ ǫ(C) OR (ii) a property p that
is incident to either X or X ′.

To select one axiom from A0 we have defined the following
axiom selection policies:

1. Random. Simply select a random axiom.

2. Properties first. Select at random from axioms in-
volving properties.

3. Classes first. Select at random from axioms involving
classes.

4. Transitive/Inverse/Functional first. Select at ran-
dom from axioms about functional, transitive and in-
verse properties. We remind the reader that we inter-
pret a functional property (p, owl:type, owl:Functional-

Property) by (X, Y ), (X, Z) ∈ µ(p) ⇒ Y = Z. We
choose functional properties first because their direct
effect is to “produce” new equivalences between indi-
viduals as a logical consequence. Transitive and in-
verse properties can be used effectively to produce the
information necessary in order to apply a functional
property axiom.

6.2 Cluster Type Selection
In the main ILIADS algorithm (Figure 2), lines 5–6)) we

heuristically select a group of clusters consisting of all class
clusters, all instance clusters or all property clusters based
on one of the following policies:

1. Random Select one of the three groups at random.

2. Weighted random Select one of the three groups
with probability proportional to the size of each group.

3. Classes first Select the classes group until no good
candidates (with similarity above λt) are found.

4. Individuals first Similar to the classes first, but
selects the group of individuals.

5. Alternate Alternate the selection between the three
groups.

Note that there is no Properties first policy. We deter-
mined experimentally that to match a pair of properties
p1, p2, we first need to have a good alignment of classes
and individuals adjacent to p1, p2, hence in general leaving
property alignments for later phases is a good policy.

Example 5 (Alignment). Figure 4 contains the align-
ment of the two ontologies in Figure 1(a) and (b) for λc

x =
.2, λi

x = .4, λp
x = .1, λc

s = .5, λi
s = .6, λp

s = .4, λc
e = .3,

λp
e = .5, λt = .7, λr = .2, N = 5, using the Transi-

tive/Inverse/Functional first strategy for selecting infer-
ence axioms and the Alternate strategy for selecting cluster
groups. Note that the classes Condition, Infection, Bacte-
rialInfection were common to the two schemas. The bold
double-arrow lines point to entities that were clustered under
equivalence axioms during the alignment. Note that not all
alignments are completely accurate – for instance, (results-
From, owl:equivalentProperty, riskFactor). However, as we
mentioned before, the intended meaning of properties can-
not be determined from the ontology alone in most cases.
As we will see in our experimental evaluation in Section 7,
matching properties is a task of considerable difficulty.

7. EXPERIMENTAL EVALUATION
We evaluated ILIADS experimentally on 30 pairs of OWL

Lite ontologies obtained primarily from ontology libraries5

5http://www.fb10.uni-bremen.de/anglistik/langpro/
webspace/jb/info-pages/ontology/ontology-root.htm
at the University of Bremen contains a very good index of
ontology sites and related projects.
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such as www.daml.org, www.schemaweb.info and protege.

cim3.net and a few ontology-related project websites such
as diseaseontology.sourceforge.net and www.geneontology.

org. A few characteristics of the dataset are given in Table
2. Four human reviewers were asked to manually integrate
the 30 pairs of ontologies in the following way:

1. At the beginning, each pair of ontologies (O1,O2) was
assigned to a randomly chosen reviewer, who was asked
to produce an integration O of the two ontologies.

2. In the next step, the pair (O1,O2) and the integra-
tion result O were assigned to a new reviewer who was
asked to improve O.

3. The process was repeated until each pair was seen once
by every reviewer.

Table 2: Dataset statistics
# inst. # cls. # prop. # triples # axioms

Min 45 57 14 194 74

Max 13451 689 97 21345 1235

Average 1984 541 64 1254 789

StDev 4534 149 47 5165 176

The integration provided by the reviewers was used as
ground truth when measuring precision and recall. There
was not a lot of direct overlap among the ontologies; on
average, 3% of the entities in each pair of ontologies had
the same name and URI in both ontologies. On average,
the ground truth contains 379 axioms, from which approxi-
mately 47% are class subsumption, 26% class equivalences,
19% property subsumption and 8% property equivalence ax-
ioms; the average number of owl:sameAs facts in the ground
truth is 287. One significant issue when computing these
measures is comparing equivalence against subsumption ax-
ioms. Assume for instance that the ground truth contains
(c, owl:equivalentClass, c′) for two classes c, c′, whereas the
algorithm finds that (c, rdfs:subClassOf, c′). In order to han-
dle such cases we split each equivalence axiom into two sub-
sumption axioms. For instance, in the previous example we
replace (c, owl:equivalentClass, c′) by {(c, rdfs:subClassOf,
c′), (c′, rdfs:subClassOf, c)}.

The implementation of ILIADS consists of approximately
5200 lines of Java code. We use the Pellet OWL API [27] to
parse OWL Lite ontologies and check whether the resulting
integration is consistent at the end of each experiment. IL-
IADS produced inconsistencies in less than .5% of the runs.
All experiments were performed on a Pentium IV 3Ghz desk-
top machine with 1GB of RAM under SuSE Linux 9.3. The
running times, as well as precision and recall values are re-
ported as an average over 5 independent runs6.

We compared our results to those of two leading systems:
FCA-merge [28] and COMA++ [1]. FCA-merge (from For-
mal Concept Analysis) is a human-aided tool for the bottom-
up merging of ontologies. The algorithm uses a corpus
of natural language documents relevant to both ontologies,
from which it extracts two formal contexts indicating which
ontology concepts appear in which document. The algo-
rithm then merges the two contexts and builds a formal
concept lattice with the same degree of detail as the source
ontologies. The concept lattice is then used to derive the

6Some of axiom and cluster selection policies use random-
ization.

Table 3: ILIADS optimal parameter values and
ranges

λ
c
x λ

i
x λ

p
x λ

c
s λ

i
s λ

p
s λ

c
e λ

p
e λt λr

Avg. .2 .4 .1 .5 .6 .4 .3 .5 .7 .2

Min .15 .4 0 .3 .45 .35 .2 .35 .65 .2

Max .25 .45 .1 .65 .7 .5 .35 .65 .7 .2

merged ontology. For each ontology pair, we automatically
collected a corpus of approximately 100 articles from the
US and European press on topics present in the two ontolo-
gies; this corpus was then used as an input to the algorithm.
FCA-merge produces alignment suggestions which are then
processed by an ontology engineer. We automatically select
the subset of suggestions that produces the highest F1 an-
swer quality. COMA++ is a tool that implements multiple
match strategies to align relational schemas, XML and OWL.
The tool uses a generic data model that supports schemas
written in different languages, as well as a repository of pre-
vious match results. Multiple matching strategies are em-
ployed, among which fragment-based matching (where we
decompose a large problem into smaller matching problems)
and reuse-oriented matching (which uses previous match re-
sults). COMA++ also provides a comprehensive graphical
user interface, which proved invaluable during our evalua-
tion.

The objectives of our experimental evaluation are three-
fold. First, we investigate the optimal choice of λ parame-
ters, heuristic selection policies and the number of inference
steps that produce the best F1 quality w.r.t. the ground
truth. Second, we compare the precision, recall and F1
quality of ILIADS with those of FCA-merge and COMA++
and investigate the extent to which the important gains in
F1 quality in ILIADS are due to (a) the tight integration
of statistical and logical inference and (b) the interplay be-
tween schema and data integration. Third, we investigate
the ILIADS λ parameters and how they correlate with the
structural properties of the input ontologies.

7.1 Optimal ILIADS Parameters
The set of parameters for ILIADS is comprised of:

• The 8 λ parameters for similarity computations.

• The threshold λt is the minimum similarity value for
which a pair of clusters are considered as candidates
for merging.

• The threshold λr is used to determine whether to use
subsumption or equivalence in a candidate pair.

• The number of inference steps N .

• The axiom selection policy and the cluster group selec-
tion policy.

• The aggregation method used to compute the similar-
ity of two clusters based on the similarities of their
elements.

For a pair of ontologies, we denote by A∗
G the ground

truth and by A∗ the set of integration axioms and facts
determined by the algorithm. We compute precision as P =
|A∗

G∩A∗|

|A∗|
and recall as R =

|A∗

G∩A∗|

|A∗

G
|

. The F1 quality measure

is defined as usual F1 = 2·P ·R
P+R

.
In our first set of experiments, we determine the parame-

ter settings that maximizes the average F1 quality over the
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Figure 5: (a) The variation of recall with the choice of policies; (b) The variation of F1 quality with the
choice of policies.

entire dataset. The optimal values of N and the two selec-
tion policies turned out to be independent of the specific pair
of ontologies. Briefly, we found that values of N ≥ 5 do not
produce statistically significant increases in overall quality.
We also found the best cluster group selection policy is to
alternate between classes and individuals, whereas the best
axiom selection policy is Transitive/Inverse/Functional first.
We discuss these parameters in detail later in this section.
In 95% of the runs, the complete link method outperformed
average link and single link when aggregating cluster simi-
larities. For the rest of the paper, complete link will be used
as the similarity aggregation method.

We varied the values of the 10 λ parameters in increments
of .05 in the range [0, 1]. We then identified the configura-
tion of parameters that maximizes the average F1 value over
the entire dataset. For each pair of ontologies, we also de-
termined the configuration of λ parameters that maximizes
the F1 quality value for that pair. This resulted in a set of
30 values for each λ parameter. Line 1 of Table 3 contains
the parameter configuration that maximizes the average F1
value for all the pairs. Lines 2 and 3 of Table 3 contain the
minimum and respectively maximum of the set of 30 values
for each λ parameter.

Next, we experimented with two different versions of IL-
IADS. The first (ILIADS fixed parameters or ILIADS-FP)
uses the λ parameter configuration in line 1 of Table 3. The
second version (ILIADS best parameters or ILIADS-BP)
uses the best λ parameters for each ontology pair. We looked
at how the choice of N affects the running time of ILIADS
and the answer quality. Since most of the running time is
spent on inference, we expected a sharp increase with N .
The experiments confirmed that the running time increases
almost exponentially for N > 5, while F1 quality stabilizes
to a a value of approximately .762 for the same values of N .
From these two observations, we determined that N = 5 is
a good compromise between quality and running time.

Finally, we looked at how the axiom selection and clus-
ter group selection policies affect precision, recall and F1
quality for ILIADS-BP. Figure 5(a) and (b) show the varia-
tion of recall and quality respectively. We omit the chart
for precision, as it is very similar to the one for recall.
First, we note that selecting axioms according to the Tran-
sitive/Inverse/Functional first policy and selecting cluster
groups according to the Alternate policy outperforms any
other combination. Second, rather surprisingly, Random

and Weighted Random policies yield better quality than
Classes first or Properties first. This again confirms that
looking at both instances and structure in alternation yields
better quality answers.

7.2 Comparison with FCA and COMA++
We compared precision, recall and F1 quality against FCA-

merge and COMA++. Figure 6(a) shows the average pre-
cision, recall and F1 quality for all four methods. From the
experimental data, we see that, on average, the improve-
ment in F1 quality of ILIADS-BP is significant; 6% over
COMA++ and 25% for FCA-merge. In addition, ILIADS-
BP has an impressive improvement in recall: 11% and 55%
for COMA++ and FCA-merge respectively. Figure 6(b)
displays a plot of recall on the Y-axis and precision on the
X-axis for every pair in the dataset. The figure suggests that
FCA-merge generally has high precision (most points are on
right side of the plot), but low recall (points are grouped in
the bottom half of the plot). COMA++ on the other hand
lies somewhere between FCA-merge and the two ILIADS
methods.

Furthermore, we have found that ILIADS performs sig-
nificantly better than average on ontologies which contain
a reasonable amount of instance data. For a subset of 21
pairs of ontologies in our dataset for which the ratio of in-
stances to classes is greater than 1.9, the average precision,
recall and F1 quality are displayed in Figure 6(c). On this
subset of ontology pairs, the improvement in average F1
quality of ILIADS-FP is of 10.3% and 29.3% respectively
for COMA++ and FCA-merge, while that of ILIADS-BP
is 14% (more than double than the average for the en-
tire dataset) and 33% respectively for COMA++ and FCA-
merge. This suggests that when we have enough instance
data, the interplay between integrating schema and data in
ILIADS yields significantly better F1 quality than existing
tools.

To further test this hypothesis and establish a baseline,
we removed all instance data from all input ontologies.
We point out that removing all instances seriously disad-
vantages ILIADS in two ways: (i) first, there is no alter-
nation between matching schema and data and (ii) the ef-
fects of the inference similarity score are greatly reduced7.
Even under these conditions, the performance of ILIADS

7In that more than 75% of the relevant inference similarity
scores come from facts inferred about data instances.
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Figure 6: (a) Precision and recall scatter plot for ILIADS, FCA-merge and COMA++; (b) Comparison of the
average precision, recall and F1 quality for ILIADS, FCA-merge and COMA++; (c) Comparison of average
precision, recall and F1 quality on a dataset of 21 pairs of ontologies; (d) Breakdown of false negatives in
ILIADS, FCA-merge and COMA++.

was comparable to FCA-merge and COMA++. The aver-
age F1 quality of ILIADS-FP, ILIADS-BP, FCA-merge and
COMA++ under these conditions is 66.9%, 68.4%, 60% and
70.5% respectively.

We also measured the running time for the three systems.
Overall, all algorithms produced the alignments in reason-
able amounts of time. On average, ILIADS-BP took ap-
proximately 416 seconds per ontology pair, with a standard
deviation of 85.6. FCA-merge was the fastest of the three,
with an average of 140 seconds per pair, whereas COMA++
has an average of 218 seconds. For ILIADS-BP, we mea-
sured the running time in each step and determined that on
average the clustering steps use approximately 19% of the
clock cycles, whereas inference uses approximately 80%.

We also looked at the alignment axioms and facts that
ILIADS, FCA-merge and COMA++ missed (i.e., false neg-
atives). We broke these down into categories based on the
type of axiom or fact (e.g., class and property subsumption
and equivalence, etc.) Figure 6(d) presents the false nega-
tive breakdown per category; the column heights are pro-
portional to the average number of false negatives for each
algorithm. It is interesting to note that the large major-
ity of false negatives in ILIADS come from missing axioms
about properties. Such axioms also have a fair share in the
false negatives of FCA-merge and COMA++. The expla-
nation for this phenomenon is that the intended semantics
of a property is not always evident from the ontology graph
alone. For instance, in Section 2 we discussed the intended
meaning of the averageCases property in Figure 1(a). How-

ever, human reviewers also use their background knowledge
when determining relationships. We suspect background
knowledge is also the reason FCA-merge does a little better
on properties than the other two systems. Recall that FCA-
merge has access to additional information in the form of a
document corpus. Figure 6(d) also suggests that the reason
for better F1 quality in ILIADS lies in its ability to han-
dle both ontology structure and instance data. FCA-merge
and COMA++ have a large number of false negatives (45%
and 30% respectively) due to missing equivalences between
individuals.

7.3 Sensitivity of λ Parameter Settings
Next, we looked at the variation of the λ parameters be-

tween pairs of ontologies. First, we note that λt and λr are
fairly stable as illustrated in Table 3. The same holds for
the three λx parameters; the only one with significant vari-
ation is λp

x, primarily due to difficulties in finding matches
between properties (as illustrated in our analysis of false
positives).

Since λs and λe vary significantly with the ontology pair,
we looked at structural indicators of the ontologies and how
they correlate with the parameters. We found that the cor-
relation coefficients between λc

s, λp
s and λi

s and the average
degree of a node8 in each ontology pair are .453, .311 and
.38 respectively. Intuitively, this says that the higher the

8Here, we use “degree of a node” to mean the number of
edges adjacent to that node.
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average degree of a node, the more important structural
similarity becomes. We also confirmed that λc

s positively
correlates to the number of rdfs:subClassOf axioms in the
ontology (the coefficient is .61). Informally this means that
the richer the class taxonomy becomes, the more important
structural similarity is for classes. We also found that for
25 out of the 30 pairs of ontologies, the variations in the λs

parameters are much smaller (λc
s ∈ [.49.61], λi

s ∈ [.56, .63]
and λp

s ∈ [.39, .45]). When looking at the remaining 5 pairs
(the “outliers”) we found that the ontologies in these pairs
have a large difference between their average node degrees
(higher than 1.5 in all cases), whereas for the 25 pairs, the
differences in the average node degrees were below 0.5. To
validate this hypothesis, we computed the correlation coef-
ficient between (1) the distance of each λs parameter to its
overall average and (2) the difference between the average
node degrees in the corresponding ontology pair. The coef-
ficients were .416, .61 and .5 for λc

s, λp
s and λi

s respectively.
This suggests that the λs parameters are generally stable
around the average for pairs with structures that were not
vastly different.

The extension similarity parameters λc
e and λp

e correlated
positively with the ratio of instances to classes in an on-
tology with coefficients of .39 and .471 respectively. Impor-
tantly, we should note that the variation in these parameters
produces significant improvement in the F1 quality only for
ontology pairs where the ratio between instances and classes
is above 1.9 (the 21 ontology pair subset). We also looked at
the correlation between the distance from the average and
the differences in instance-to-class ratio in the 21 ontology
pairs and found coefficients of .34 and .43 for λc

e and λp
e

respectively. This suggests that the closer the ratio of in-
stances to classes in the two ontologies in the pair, the closer
the λe parameters are to the average.

8. RELATED WORK
Ontology alignment methods can generally be classified

as local methods and global methods. Local methods are
further decomposed into terminological (or lexical), struc-
tural, semantic and extensional. Many of the terminological
approaches use an external lexicon to match terms which
are semantically related. Patel et al. [21] developed On-
toGenie, a tool that parses web pages to create knowledge
instances for a given ontology using WordNet as a bridge.
Silva and Rocha [26] use a semantic similarity measure pro-
posed by Resnik [25] to establish correspondences between
terms. They use these to transform instances for a source
ontology into instances in a target ontology. The similarity
measure uses a probabilistic assignment of terms to synonym
sets based on an external corpus. ILIADS uses WordNet as
well, however the weight given to the information from the
lexicon is configurable through the λx parameters. As seen
in Section 7, in ILIADS lexical similarity accounts for about
20% of the final similarity score.

In the area of structural methods, Li and Clifton [14]
present a tool called SEMantic INTegrator (SEMINT) that
uses neural networks to assist in finding correspondences be-
tween attributes in heterogeneous databases. SEMINT uses
both schema and data (like many schema matching tools
[24]) to produce matching rules automatically. The schema
information used includes data types, length, scale, preci-
sion, the existence of keys and other constraints, etc. The
data is used to compute statistics (min, max, variance, scale,

etc.) to determine data distributions that can be compared.
Ehrig and Sure [7] proposed the definition of a set of rules
for determining similarity between ontology instances, and
were the first to point out that OWL features such as sym-
metry and restriction of values could be used. ILIADS uses
such features to a certain extent to measure structural sim-
ilarity (e.g., in the computation of simfeatures). However,
in our experiments we determine that structural similarity
alone does not necessarily lead to an answer with high recall.

When we define our compound similarity measure based
on node neighborhoods, the similarity measure is essentially
still local, since it considers only the neighborhood of a node
and not the entire ontology. Moreover, local similarity mea-
sures can be defined in a complex interacting manner, as
in the case of ILIADS, which means they cannot be com-
puted in a single step. One can view the integrated incre-
mental inference that we perform as a sort of propagation
of similarity through the graph. This helps to relate our
approach to other similarity propagation methods. Melnik
et al. [17] introduced similarity flooding, a generic graph
matching algorithm which computes the correspondences of
nodes in the graphs as the fixpoint of an operator. Doan
et al. [6] present the Glue system, which learns classifiers
for classes based on instance data, and finally computes the
joint probability distribution of instances. The principle is
the same as the extensional approach – two classes are more
similar if their instances are the same. The system uses a
relaxation labeling process to propagate similarity. ILIADS
uses a slightly different similarity propagation method. For
instance, assume nodes c, c′ are similar enough to be clus-
tered in the current step. Then the similarity between nodes
in their neighborhoods will increase, and may now be con-
sidered as candidates for merging. The logical inferences
made will also result in changes to the similarity. The most
successful ontology matching systems, like COMA++ and
FCA-merge, do not fall neatly into any of these categories,
but rather use a mixture of techniques. Anchor-PROMPT
[20] and Chimerae [16] use a variety of lexical and structural
based techniques to evaluate the semantic similarity of con-
cepts and allow a human reviewer to make the final decision
in difficult cases. IF-map [12] is another system rooted in
formal concept analysis that aligns two ontologies based on
how they map to a third reference ontology. S-Match [9] is
a schema-matching system based on an extensible library of
matching generators ranging from lexical methods to SAT
solvers. HumMer [19] is a system that performs schema
and data fusion for relational databases. Schema matching
is performed through duplicate detection, where similar or
duplicate data values are used to infer schema matchings.
HumMer also performs data fusion by allowing the user to
select from a large list of conflict resolution strategies. ILI-
ADS takes a different approach to the integration problem,
by interleaving data and schema integration, as well as tak-
ing advantage of the richer structure of OWL-Lite ontologies
to infer possible matchings. In [2], Bernstein et al. present
an interactive schema matching tool that, in addition to
structural and lexical properties of the two schemas also uses
user action history and existing matches to personalize the
process of generating schema matchings. Unlike ILIADS,
the system does not yet use data values when generating
matches and is built for XML-to-XML mapping, a language
that does not provide support for logical inference. Madha-
van et al. [15] present an architecture for a schema matching
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system that leverages past experience. The authors use a
Mapping Knowledge Base to learn classifiers for schema el-
ements seen in the past and predict the degree of similarity
between schema elements. The approach is complementary
to that of ILIADS – the name, instance and structure learn-
ing techniques defined could be used to improve the quality
of ILIADS once a sufficiently large corpus of ontology pairs
is available. OLA [8] is the only system designed specifically
for OWL Lite and which uses a global similarity measure for
ontology alignment. Local similarity between entities in the
ontologies produces a set of equations which are iteratively
solved to provide a set of mappings. Unlike ILIADS, OLA
does not use the inference capabilities of OWL directly.

9. CONCLUSION
We have presented ILIADS, a novel ontology integration

tool which tightly integrates statistical matching with logical
inference. This tight integration means that our algorithm
can exploit data and structure effectively to produce high
quality integration results. We have investigated how the
ontological structure itself affects the utility of different in-
ference and matching strategies and how our algorithm can
adapt to the characteristics of the ontologies to be merged.

We have validated our results on an extensive collection
of real-world ontologies. Our most important findings are
that: (i) the number of inferences steps and the heuristic
policies are independent of the particular input ontologies,
(ii) ILIADS significantly outperforms COMA++ and FCA-
merge, especially so for ontologies with a reasonable amount
of instance data and (iii) the parameters of ILIADS corre-
late to structural properties of the ontologies and are stable
for ontology pairs that do not have very different structures.
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