Event Classification and Relationship Labeling
in Affiliation Networks

Abstract

Many domains are best described as an affili-
ation network in which there are entities such
as actors, events and organizations linked to-
gether in a variety of relationships. Rela-
tional classification in these domains requires
the collective classification of both entities
and relationships. In this paper, we inves-
tigate the use of relational Markov networks
(RMN) for relational classification in affili-
ation networks. We study two tasks, event
classification and relationship labeling, and
discuss general issues in constructing an ap-
propriate RMN from an affiliation network.
We evaluate our methods on a novel dataset
describing terrorist affiliation networks which
includes data about actors (terrorists), events
(terrorist attacks) and organizations (terror-
ist organizations). Our results highlight sev-
eral important issues concerning the effec-
tiveness of relational classification and our
experiments show that the relational struc-
ture significantly helps relationship labeling.

1. Introduction

Traditional machine learning techniques mainly con-
centrate on identically and independently distributed
samples. However, most real-world datasets are re-
lational in nature and the correlations due to the
link structure provide an important source of infor-
mation. Recent research has focused on making use
of the relational structure to improve the quality of
prediction. Some of these works include Relational
Markov networks (RMN) (Taskar et al., 2002), Con-
ditional Random fields (CRFs) (Lafferty et al., 2001),
Relational Dependency networks (RDNs) (Neville &
Jensen, 2004), Lu and Getoor (2003) etc. We refer
the interested reader to Getoor and Diehl (2005) for a
survey of recent research in this area.
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In this paper, we study the application of relational
learning techniques to affiliation networks. Affiliation
networks describe the associations of actors and events
and are a common form of two-mode social networks.
The particular dataset that we study is a three-mode
network that describes people, events and organiza-
tions.

We investigate two tasks in these networks: event
classification and relationship labeling. In event
classification, we are trying to predict the label on a
node. In our case, we predict event labels. In rela-
tionship labeling, we are trying to label a relationship
between two actors. Here we predict the labels on
actor-actor relationships. One of the non-trivial as-
pects in this domain is how the three-mode network
can be transformed to support each task. Also, while
there has been a significant amount of work on re-
lational classification, there has been much less work
done on link labeling.

The  affiliation  network  which we  study
comes from the Profile in Terror
(http://profilesinterror.mindswap.org/) (PIT)

project.  The PIT knowledge base captures ter-
rorism intelligence extracted from various sources
like news media reports. The knowledge base de-
scribes a network of terrorists, terrorist attacks and
terrorist organizations. One of the challenges in this
domain is that the intelligence is scarce in nature and
information available can be partial and incomplete.

In this paper, we apply relational classifiers to perform
two tasks: terrorist attack classification and terrorist
relationship labeling. For comparison, we provide as a
baseline, the results returned by a content-only max-
imum entropy classifier (flat model). We hypothesize
that by considering the relational structure, the accu-
racy of classification and labeling using a RMN will be
higher than the flat model which uses features on data
entities. Interestingly, our results for this domain show
that the relational structure does not help significantly
with event classification accuracy; on the other hand,
it is of significant importance for relationship labeling.
We discuss both the obvious and less obvious reasons
for this difference in importance.
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The remainder of the paper is organized as the fol-
lows. Section 2 describes the PIT knowledge base.
Section 3 describes relational Markov networks, the
relational classifier we used in our experiments. Sec-
tion 5 describes the event classification problem and
Section 6 describes the relationship labeling problem.
In Section 7 we discuss our findings and conclude with
future work in Section 8.

2. PIT Knowledge Base

PIT is a comprehensive semantic knowledge base cap-
turing relevant information designed to help analysts
analyze past information, share common knowledge
and respond, and hopefully prevent, terrorism threats.
It is not merely a data portal. The schema of PIT is
described in OWL and the knowledge base is stored
in a RDF datastore. The information is stored in a
machine accessible way to facilitate information ex-
change and reasoning. It also provides a platform for
studying advanced and new methodologies for predic-
tive modeling, terrorist (social) network analysis, and
visualization of terrorists activities and relationships.

PIT contains all relevant knowledge about facilities,
activities, terror attacks, terrorists and organizations.
Facilities include places where terrorist are trained and
offices which are used as activities bases. Activities
include different forms of events like raising funds,
recruiting members and smuggling weapons. Terror-
ists plot and execute different types of attacks: ar-
son, bombing, kidnapping, NBCR (Nuclear, Biology,
Chemistry and Radiology) attack, and weapon attack.
Terrorists function by participating and forming orga-
nizations including terrorist organizations and crimi-
nal gangs. The core of a terrorism knowledge domain
are terrorists, terrorist attacks and terrorist organiza-
tions. These are the actors, events and organizations
respectively in the PIT network. Each PIT object is
described by a set of features. For example, each at-
tack has a short “label” which is a one sentence sum-
mary and “description” consisting of a paragraph with
a detailed description. Each attack also has features
describing when the attack happened, the location of
the attack, the number of injured people and the num-
ber of people killed.

Different entities in knowledge base are related to each
other in complex ways to form a network. Terrorist at-
tacks are linked to the organizations that planned the
attacks. Terrorists are linked to each other if they con-
tact each other, use the same facility, are members of
the same family, or belong to the same terrorist or-
ganization. Terrorists are considered to have been in
contact with each other if they attend the same meet-

ing, they communicate (via a phone call, an email or
text message) with each other, or they transfer money
to each other. Terrorists are considered to use the
same facility if they go to the same mosque, attend
the same training camp or work in the same office.
Understanding the various relations can help analysts
uncover the underlying network of terrorists as well as
terrorist organizations and identify ongoing activities
and plans.

3. Relational Markov Networks

Undirected graphical models or Markov networks (Cow-
ell et al., 1999) have been shown to be an effective
way to represent diverse classification problems and
correlations due to the link structure. Due to the flex-
ibility they offer, all our experiments with the PIT
dataset were performed using Relational Markov net-
works (RMNs) (Taskar et al., 2002), an extension of
Markov networks to relational domains. Here we re-
view the RMN framework.

Let V be a set of discrete random variables, and let v
be an assignment of values to the random variables. A
Markov network is described by a graph G = (V, E)
and a set of parameters U. Let C(G) denote a set
of (not necessarily maximal) cliques in G. For each
¢ € C(G), let V. denote the nodes in the clique. Each
clique ¢ has a clique potential ¥.(V.) which is a non-
negative function on the joint domain of V. and let
U = {¢Ye(Ve)}eec(a)- For classification problems we
are often interested in conditional models. Let X be
the set of observed random variables we condition on
and let x denote the observed values of X. Let X,
denote the observed random variables in clique ¢ €
C(G) and let z. denote the observed values of X,.. Let
Y be the set of target random variables to which we
want to assign labels and let y denote an assignment to
Y. Let Y, denote the set of target random variables
in clique ¢ € C(G) and let y. denote an assignment
to it. A conditional Markov network or conditional
random field is a Markov network (G, ¥) which defines

the distribution P(y | x) = ﬁﬂcec(a) VYe(Tes Ye)
where Z(x) = 3", [, ¥e(xe, y0).

Conditional Markov networks, as presented above, are
not suited for event classification tasks since they in-
volve clique specific potentials ¥.(V,). RMNs (Taskar
et al., 2002) are an extension of the Markov network
framework to relational domains where we define the
clique potentials in log-space using a small set of fea-
ture functions log e (ye, zc) = Y, wifi(xc,ye) where
fi is the *" feature function (usually a simple indica-
tor function) and w; is a parameter which needs to be
estimated.
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Parameter estimation for RMNs can be performed us-
ing gradient-based optimization methods from fully la-
beled training data (Taskar et al., 2002). Taskar et al.
also show that to estimate the gradient one needs to
perform inference over the training data. In relational
domains, the underlying Markov network is usually
large and densely connected making exact inference
infeasible. Thus Taskar et al. propose the use of ap-
proximate inference methods like loopy belief propa-
gation (Yedidia et al., 2000).

4. Constructing the Markov network

Due to the multi-relational nature of the dataset we
have a wide variety of ways to construct the Markov
network.

4.1. Markov network for Event Classification

In event classification, the object labels depend on re-
lated object labels. But objects can be related in a
variety of ways, and it is not always clear which rela-
tionship or relationships to focus on.

For event classification, specifically terrorist attack
classification, we considered two different ways to re-
late events:

e [oc RMN: we connect each pair of attacks that
occurred in the same geographical location.

e loc+org RMN: we connect each pair of attacks
that occurred in the same geographical location
and were organized by the same organization.

4.2. Markov network for Relationship Labeling

In relationship labeling, the labels of the relations be-
tween entities are correlated with each other. A conve-
nient way to capture this correlation is to represent it
as a Markov network where each node refers to an ac-
tor and each edge is a relation connecting two actors.
Unfortunately, this actor graph is not conducive to the
problem of relationship labeling where we need to have
random variables representing the labels on the rela-
tions. We apply a simple transformation to the actor
graph to construct a new graph, the link graph, where
each node represents a relation and each edge connects
two relations having a common actor. More specif-
ically, let t;, t; and ¢, represent actors in the actor
graph and let 7;; and r;;, denote the relations connect-
ing t;,t; and t;,ty respectively. In the link graph, we
introduce an edge connecting every pair of such rela-
tions r;; and r; since they have an actor in common
(viz. tj). We report experiments with RMNs that in-
cluded cliques for each edge in such link graphs (dyad

RMNs). In Figure 1 we show a small subset of the ter-
rorist graph from the PIT knowledge base (Figure 1
(a)) and the corresponding link graph (Figure 1 (b)).
Notice that the link graph contains dense clusters of
nodes and greater number of edges.

The main intuition behind connecting nodes represent-
ing relations is to exploit the correlation amongst la-
bels on relations connecting the same actors. Our ex-
periments indicate that relations involving the same
actors often have the same labels. Taskar et al. (2004)
used a similar approach to classify hyperlinks connect-
ing university webpages.

One of the problems we faced while experimenting
with dyadic link graphs generated with the above de-
scribed approach is that the generated graph is often
too dense for RMNs to handle. In particular, approxi-
mate inference techniques like loopy belief propagation
(Yedidia et al., 2000) are known to provide poor ap-
proximations when there are a number of short, closed
loops (Yedidia et al., 2005) (a direct consequence of
high link density) in the underlying Markov network.
Due to the poor quality of inference, the parameter es-
timation for RMNs often did not converge to desirable
values.

In an effort to reduce the edge density in the link
graphs and to determine whether other types of cor-
relations exist in the dataset we experimented with
what Taskar et al. (2004) refers to as transitivity pat-
terns. Let t;, t; and t; represent three terrorists in
the terrorist graph and let 7;, 75 and 74; represent
the corresponding relationships then we introduce a
clique amongst 7;;, 7j and 7; in the link graph. This
type of a clique generation procedure captures correla-
tions where transitivity holds, e.g., suppose t; belongs
to the same family as t; and ¢; shares a familial bond
with t;, then t; and ¢, also belong to the same family.
To keep the edge density of the generated link graphs
in check we did not consider the dyadic introduced
previously while experimenting with such triad cliques
(triad RMNS).

5. Event Classification

We begin by describing the PIT data which is used for
event classification and then describe our results.

5.1. Terrorist Attack Dataset

In the PIT knowledge base, there are a total 1,293 ter-
ror attacks each classified into one of six classes: ar-
son (2.4%), bombing (43.5%), kidnapping (13.8%),
NBCR (0.6%), other attack (1%) and weapon at-
tack (38.5%). We note that bombing, weapon attack
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Figure 1. (a) A terrorist graph from the PIT dataset consisting of 181 edges and (b) the corresponding link graph consisting

of 580 edges

and kidnapping are the three major attack types and
they dominate the dataset. NBCR (Nuclear, Biology,
Chemistry and Radiology) and other attack only have
less than 1% data in the dataset. We begin exploring
the dataset by considering the problem of collectively
assigning each attack instance its correct class label.

5.2. Experiments

We split the dataset into three sets each containing
around 430 instances to be labeled and performed
three-fold cross validation. Each set was created using
stratified sampling so all sets contain the same distri-
bution of class labels.

As part of the evidence, we include with each terror
attack instance various types of information such as
year of attack, keywords from a description written
by a human etc. As a baseline, we compare the var-
ious RMNs against a content-only maximum entropy
classifier (flat model).

For each classifier, we assume a ”shrinkage” prior and
compute the MAP estimate of the parameters. More
precisely, we assumed that different parameters are a
priori independent and define p(w;) = Aw?. We tried a
range of regularization constants for each classifier and
found that A = 10 returned the best results. Taskar

Flat | RMN loc | RMN loc+org

87.06 86.93 87.1

’ Avg. Accuracy

Table 1. Average classification accuracy of terrorist attacks

et al. (2002) report using a regularization constant of
the same magnitude A =~ 5.5.

As Table 1 shows, the RMNs and the flat model return
almost identical performance and there is not much to
choose between them. The reason for this turns out to
be the high quality of evidence we considered. Each
terror attack is accompanied by a description that was
written by a human while entering the terror attack
into the knowledge base. This description frequently
contains some highly predictive words, e.g., ”explo-
sion” or ”detonated” in the case of a bombing etc.

In future, we aim to exclude this type of human written
evidence and use other type of automatically gathered
evidence to find out if machine learning classifiers can
label effectively.

6. Relationship Labeling

At the core of terrorist activity is a network of personal
connections that allows the terrorist organization to
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function. Consequently, looking at who knows whom
and how they are related to each other is central to
understanding the extent of terrorist activities. Intel-
ligence information can show that two terrorists are
related in some ways but in what exact way is often
unknown. Therefore it is important to understanding
the nature of the relation structure amongst the ter-
rorists from the known data and be able to label all
the unknown relations.

6.1. Terrorist Relation Dataset

In the PIT knowledge base, there are a total 435 ter-
rorists hand-classified into one of four types: terrorist
(70%), terrorist leader (11%), politician (6%) and peo-
ple (a grab bag comprising of individuals who are not
assigned to any particular type, 13%). The terrorists
are connected by a total 917 binary relations. Each
relation is hand-tagged with one or more labels de-
scribing the nature of the relation:

e accomplice (53.1%): An accomplice relation
means two people are members of the same ter-
rorist organization.

e family (14.8%): A family relation means two
people are in the same family (e.g. father-son,
husband-wife, uncle-nephew, cousin-cousin).

e contact (19.6%): A contact relation means two
people have contacted each other (e.g. attend the
same meeting, email each other, call each other
via phone).

e congregate (12.4%): A congregate relation
means two people use the same facility (e.g. go to
the same training camp).

Our aim is to assign each relation its correct set of
labels. Since a relation can have more than one la-
bel, this problem is an instance of relational multi-label
classification.

6.2. Experiments

We split the terrorist relation dataset into two sets
and performed two-fold cross validation. Each set was
created using stratified sampling so both sets contain
the same distribution of class labels.

As part of the evidence, we included with each rela-
tion various types of information belonging to the ter-
rorists involved in the relation like nationality, words
from their biography, the label on the terrorist etc.
We compared the various RMNs against a baseline
content-only maximum entropy classifier (flat).

O Flat Model @ RMN Dyad U RMN Triad

100 r
9 r
92 r
88 r

80 r
76
72 r
68 -

Test Accuracy
€

contact congregate family accomplice

Figure 2. The average classification accuracy for binary
terrorist relationship labeling.

Just as before, for each classifier, we assumed a
”shrinkage” prior and compute the MAP estimate of
the parameters using a regularization constant of 10.

6.2.1. MULTI-LABEL CLASSIFICATION RESULTS

We first report the results of the relational multi-label
classification experiments. A simple way to perform
multi-label classification is to learn numerous binary
one-against-the-rest classifiers. Thus we learn four dif-
ferent types of classifiers one for each of accomplice,
family, contact and congregate. The results are shown
in Figure 2.

Figure 2 shows that the triad RMN always does better
than the flat model. As we remarked earlier, the dyad
RMN sometimes (in the case of accomplice) fails to
improve upon the results of the flat model due to the
excessive link density. Another reason for the lower
than expected accuracy for the dyad RMN could be
due to the loss of information of reducing all out-of-
class relations to the same label. For example, when
classifying for contact, all relations labeled congregate,
family or accomplice will be reduced to non-contact
thus losing information in the form of correlations.

As part of our future work we aim to utilize methods
such as Ghamrawi and McCallum (2005) to perform
collective multi-label classification.

6.2.2. SINGLE-LABEL MULTI-CLASS CLASSIFICATION
RESULTS

As part of our efforts to perform some experiments
on multi-class data we obtained a single label dataset
by throwing out all the relations with multiple labels.
This reduced our dataset from 917 to 884 relations.
Thus we obtained a single label multi-class dataset.

Figure 3 shows the results on this dataset for the
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Figure 3. Average classification accuracy of terrorist rela-
tion labeling.

three classifiers flat, dyad RMN and triad RMN on
the multi-class classification problem. Notice that in
Figure 3 the dyad RMN performs consistently better
than the triad model and the triad RMN consistently
improves upon the results of the flat model showing
that both dyad and triad cliques can be useful for re-
lationship labeling. One of the reasons for the dyad
RMN doing better than the triad RMN could be the
fact that there are a lot more links in the dyad RMN
thus allowing the inference procedure to exploit more
correlations that exist in the link structure.

In Figure 3, we also report the results of experiments
without certain features. In particular, Taskar et al.
(2004) report that relation classification (in their case
hyperlinks) may be improved if one includes as part
of the evidence the labels on the entities (in their case
the webpages) themselves. In Figure 3, the ”No Type”
results were obtained by not including in the set of
features comprising of the class labels on the terror-
ists (leader, terrorist etc.). We confirm that including
the labels on the entities as evidence aids the rela-
tionship classification. The set of results labeled ”No
Keywords” were obtained by not utilizing the biogra-
phies of the terrorists as evidence which happens to
be a substantial part of the feature set and the results
show that relational methods can do well even when
there is a dearth of evidence.

7. Discussion

We were confronted with a number of issues during the
process of pre-processing and experimenting with the
PIT dataset. Here we discuss each issue in turn with
the hope of identifying important avenues for future
work.

One of the issues that usually comes up during the
pre-processing of relational datasets is how to con-
struct training and test datasets? It is not always the
case that the dataset itself provides subsets that are
natural splits such as the university splits in WebKB
(Craven et al., 1998) where each split forms a disjoint
graph. One common approach used to create training
and test splits for identically and independently dis-
tributed samples is to create randomly sampled strat-
ified subsets of the data so that each subset contains
the same distribution of class labels. This approach
fails on two counts in the case of relational data:

e Random sampling may cause linked entities to
fall into different subsets. The links that go from
one subset to another are usually ignored during
parameter estimation if both the subsets are not
used for learning and this means that we are ig-
noring some information and not using the data
fully.

e The intuition behind creating training and test
sets is to make sure that they come from the same
distribution. Unfortunately, since random strati-
fied sampling does not look at the links, it may be
the case that we construct splits containing an un-
equal number of links. Figure 4 shows two splits
that were created from the terrorist relation PIT
dataset. Note that Figure 4 (b) is much denser
than Figure 4 (a). Clearly, these two splits do not
represent the same distribution.

Another important issue that comes up when dealing
with relational datasets is the problem of high link
density. Common approximate inference techniques,
loopy belief propagation (Yedidia et al., 2000) in par-
ticular, face problems when run on datasets with high
link density, in particular, if the dataset contains nu-
merous densely clustered nodes forming short, closed
loops (Yedidia et al., 2005). This usually causes the
approximate inference approach to return a poor ap-
proximation resulting in poor quality inference.

Our experience with the PIT dataset shows that
this dataset is quite different from common relational
datasets such as WebKB (Craven et al., 1998) or Cora
(McCallum et al., 2000). The PIT dataset contains a
larger number of clusters of nodes making it a much
more challenging dataset. We hope that such datasets
with markedly different properties will help researchers
in the field identify new and interesting problems to
work on.
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Figure 4. Naively created splits of different densities using stratified sampling. (a) A split comprising of 442 nodes and

225 edges. (b) A split comprising of 442 nodes and 283 edges.

8. Conclusion and Future Work

In this paper we introduce a novel dataset, the PIT
knowledge base, and show that affiliation networks can
provide a rich source of relational data. We apply re-
lational classifiers to perform two tasks on the PIT
knowledge base: event classification and relationship
labeling. We compare the performance of the rela-
tional classifier against a content-only maximum en-
tropy classifier.

Our experimental results show that a RMN can im-
prove the accuracy and outperform traditional flat al-
gorithms if good cliques can be identified. We need to
study further how to form cliques and identify general
clique patterns which can be applied across different
domains. There is a trade-off between the effective-
ness and efficiency of the RMN and we are interested
in investigating the optimal density and how to select
among different cliques in affiliation networks.
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