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In the last few years, there has been a growing interest in studying online

social and affiliation networks, leading to a new category of inference problems

that consider the actor characteristics and their social environments. These prob-

lems have a variety of applications, from creating more effective marketing cam-

paigns to designing better personalized services. Predictive statistical models al-

low learning hidden information automatically in these networks but also bring

many privacy concerns. Three of the main challenges that I address in my thesis

are understanding 1) how the complex observed and unobserved relationships

among actors can help in building better behavior models, and in designing more

accurate predictive algorithms, 2) what are the processes that drive the network

growth and link formation, and 3) what are the implications of predictive algo-

rithms on the privacy of users who share content online.

The majority of previous work in prediction, evolution and privacy in on-

line social networks has concentrated on the single-mode networks which form

around user-user links, such as friendship and email communication. How-



ever, single-mode networks often co-exist with two-mode affiliation networks

in which users are linked to other entities, such as social groups, online content

and events. I study the interplay between these two types of networks and show

that analyzing these higher-order interactions can reveal dependencies that are

difficult to extract from the pair-wise interactions alone. In particular, I present

my contributions to the challenging problems of collective classification, link pre-

diction, network evolution, and preserving privacy in social and affiliation net-

works. I evaluate my models on real-world data sets from well-known online

social networks, such as Flickr, Facebook, Dogster and LiveJournal.
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Chapter 1

Introduction

In the last few years, with the myriads of social media and social network

websites appearing online, there has been a renewed and growing interest in

understanding social phenomena rising from people’s interactions and affilia-

tions [3, 38]. These websites have thousands, and even millions of users which

voluntarily submit personal information in order to benefit from the services of-

fered, such as maintaining friendships, blogging, sharing photos, music, articles

and so on. This rich information can be used in a variety of ways to study peoples

personal preferences, patterns of communication and flow of information.

Social network analysis (SNA) as a field started at the end of the nineteenth

century and it analyzes the network of connections between individuals in or-

der to evaluate and quantify an individual’s role in a group or community [44].

One of the central ideas in it are that people develop their identities by inter-

acting with other people which makes studying their social environment very

important. People’s personal attributes and roles often correlate with the ones
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of the people with whom they associate, e.g., teenagers are likely to be friends

with other teenagers, graduate students often collaborate with their research ad-

visors, company employees often write emails to their direct managers. Nowa-

days, SNA involves collecting massive amounts of data from multiple sources,

analyzing the data to identify relationships and mining it for new information [3].

Data mining, machine learning and statistics researchers have been using

statistical methods for decades to model and study interesting patterns in data [109,

18, 51], and there has been an increasing interest in developing methods that work

specifically for network data. Traditionally, machine learning has studied data

instances which are independent and identically distributed. With the growth of

the World Wide Web and the emergence of online social networks, there has been

an increasing interest in developing algorithms which can take advantage of the

dependencies between data instances. At the intersection of statistical methods

with network analysis, come the fields of link mining and statistical relational

learning. Link mining is a part of data mining which studies descriptive or pre-

dictive models of data which take advantage of the explicit links between data

instances [46, 149]. Statistical relational learning (SRL) [47] is a part of artificial

intelligence and machine learning which models uncertainty in rich, relational

domains, often by combining probabilistic graphical models [69] with first-order

logic. Common tasks in link mining and SRL include link-based classification,

ranking, entity resolution, group detection, and link prediction, to mention a few.

Goldenberg et al. [50] provide a survey on statistical network models.

Most of the work in link mining for online social networks has focused on

2



Figure 1.1: A hypothetical Facebook profile.

studying the network around actor-actor links such as friendships. However,

social media data is usually rich and in addition to the links between users, it in-

cludes links of users to other types of objects, such as groups, events, community

pages and preferred content. We call these links affiliation links, and the contribu-

tion of our work is in overlaying social and affiliation networks, and developing

algorithms for analyzing the two. We will argue that studying both explicit and

hidden user characteristics in this setting can give us a more complete profile of

social network users and lead to the development of better predictive algorithms.

Before we introduce the specific problems which we address in this thesis, we

present the data model used throughout.

3



Figure 1.2: A toy social and affiliation network.

1.1 Data model

In the context of this thesis, when we refer to social networks, we generally

mean online social networks. This includes online sites such as Facebook, Flickr,

LinkedIn, etc., where individuals can link to, or ”friend,” each other, and which

allow rich interactions such as joining communities or groups of interest, or par-

ticipating in discussion forums. These sites often also include online services

which allow users to create profiles and share their preferences and opinions

about items, such as tagging articles and postings, commenting on photos, and

rating movies, books or music. Thus, we view a social network as a multi-modal

graph in which there are multiple kinds of entities, including people, groups, and

items, but where at least one type is an individual and the links between individ-

uals represent some sort of social tie. Each node of an individual has a profile,

and profiles can have personal attributes, such as age, gender, political affiliation,

4



etc.

We concentrate on networks which have two types of commonly occurring

links - user-user links, and user-group links. More formally, we represent the so-

cial network as a graph G = (V,Ev, H,Eh), where V is a set of n nodes which

represent user profiles, such as the one in Figure 1.1. Each node can have a set of

attributes v.A. An edge ev(vi, vj) ∈ Ev is a social link and represents a relationship

between the nodes vi and vj such as friendship. Relationships can be of different

types (such as in a multiplex network), and there can be more than one relation-

ship between a pair of users. We use H to denote both formal online groups and

other online content for which users have preference, such as photos, movies, fan

pages, etc. We refer to H as affiliation groups. An edge eh(vi, hj) ∈ Eh represents

an affiliation link of the membership of node vi to affiliation group hj . Social links,

affiliation links and groups also can have attributes, ev.A, eh.A and h.A, respec-

tively. We also define P to be a set of real-world entities which represent actual

people.

As a running example, we consider the social network presented in Fig-

ure 1.2. It consists of seven profiles which describe a collection of individuals

(Ana, Bob, Chris, Don, Emma, Fabio, and Gina), along with their friendship links

and their affiliation groups of interest. Users are linked by a friendship link, and

in this example they are reciprocal. There are two groups that users can par-

ticipate in: the ”Espresso lovers” affiliation group and the ”Yucatan” affiliation

group. These individuals also have personal attributes on their profiles: name,

age, gender, zip code and political views (see Figure 6.3 on page 151). User-group
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affiliations can also be represented as a bipartite graph, such as the ones in Fig-

ure 6.4 (page 167) and Figure 6.5(a) (page 168).

1.2 Organization

In this thesis, we present our work in the area of statistical modeling for

social and affiliation networks which spans three related areas. The first part, on

predictive modeling, looks at the problems of inferring the personal attributes

and latent preferences of users. The second part looks at models for the growth

and evolution of these two types of networks. While predictive statistical mod-

els allow learning hidden information automatically in these networks, they also

bring many privacy concerns because of the potentially sensitive nature of per-

sonal data. We discuss some of the privacy issues with predicting personal infor-

mation using social and affiliation networks in the third part of our thesis. Next,

we give a brief overview of the three parts of the thesis. The introduction to each

of the parts gives a broader perspective, and puts each work in the context of

related work.

Accurate predictive algorithms are highly desired as they allow social me-

dia providers to create more complete user profiles, and they can be used for a

variety of applications, from ad targeting to offering personalized services. In

Part I of my thesis, I propose algorithms for inferring personal attributes of users

considering two scenarios. In the first scenario, the social network data contains

some users for which the attribute values, e.g. gender, political views, location,
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are known, and the algorithm has to infer the values for the other users. In the

second scenario, we are interested to infer a user attribute that is not directly

observable for any of the users, e.g., users’ taste in music, books or music, or

whether a user is shy. I call this type of attribute latent user characteristics.

Supervised learning, or classification, refers to learning a machine learning

model from labeled training data in order to infer the labels of unknown, testing

data. For inferring personal attributes, we study probabilistic graphical models

for relational classification in networks. In Chapter 2 we look at social and af-

filiation networks in which friendship links and group membership can be used

to infer hidden attributes in a collective inference framework. We explored dif-

ferent ways of using the social groups as either node features or to construct a

higher-order Markov Random Field (MRF) structure [156]. The bottleneck in ap-

plying higher-order MRFs to a domain with many overlapping large cliques is

the complexity of inference which is exponential in the size of the largest clique.

To circumvent the slow inference problem, we use graph-cut based methods to

achieve fast approximate inference results. Our results on a Facebook dataset

suggest that our higher-order MRF models are capturing the important structural

dependencies in the networks and improve model accuracy.

Sometimes, we are interested in learning user characteristics which emerge

from aggregating data patterns across users and for which there is no labeled

data. Besides studying classification for predicting missing or unknown user at-

tributes in the supervised setting, we have studied probabilistic graphical models

for discovering latent user characteristics in an unsupervised setting. In Chap-
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ter 3, we present statistical models for describing patterns of song listening in

online music communities [157] and for discovering the latent taste and mood

of users. First, we adapt a topic model, namely the Latent Dirichlet Allocation

(LDA) model [20] to capture music taste from listening activities across users and

identify both the groups of songs associated with the specific taste and the groups

of listeners who share the same taste. Second, we define a graphical model that

takes into account listening sessions and captures the listening moods of users

in the community. Our session model leads to groups of songs and groups of

listeners with similar behavior across listening sessions and enables faster infer-

ence when compared to the LDA model. Our experiments with the data from

an online media site demonstrate that the session model is better in terms of the

perplexity compared to two other models: the LDA-based taste model that does

not incorporate cross-session information and a baseline model that does not use

latent groupings of songs.

A common property of online social and affiliation networks is that they

are dynamic and change over time – new users join the network and link to other

users, new groups are formed and users form affiliations to these groups. New-

man et al. give an overview of the research literature on the structure and dy-

namics of networks [119]. Part II of the thesis studies the processes of evolution

and link formation which is crucial in understanding what drives the users’ en-

gagement, and consequently, the growth of online social and affiliation networks.

In Chapter 4, we address the problem of modeling social network gener-

ation which explains both link and group formation [158]. Recent studies on
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online social network evolution propose generative models which capture the

statistical properties of real-world networks related only to node-to-node link

formation. We propose a novel model which captures the co-evolution of online

social and affiliation networks. We provide surprising insights into group forma-

tion based on observations in several real-world networks, showing that users

often join groups for reasons other than their friends. Our experiments show that

the co-evolution model is able to capture both the newly observed and previ-

ously studied network properties. This work is the first to propose a generative

model which captures the statistical properties of these complex networks. The

proposed model facilitates controlled experiments which study the effect of ac-

tors’ behavior on the network evolution, and it allows the generation of realistic

synthetic datasets.

A related link mining task is predicting which users are likely to form a

link, which is referred to as link prediction. Link prediction can be posed as a

supervised classification task which considers node and structural attributes as

features. Chapter 5 presents how social and affiliation networks can be overlaid

to perform better link prediction, and proposes a feature taxonomy for link pre-

diction in this setting [155]. We show that when there are tightly-knit groups

in a social network, the accuracy of link prediction models can be improved.

This is done by making use of the likely structural equivalence of participants

in the groups. Our experiments on a trio of interesting real-world social net-

works demonstrate significantly higher prediction accuracy (between 15% and

30% more accurate) as compared to using more traditional features such as de-
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scriptive node attributes and structural features.

While discovering hidden knowledge in social networks is a compelling

application of machine learning and graph mining algorithms, this knowledge

often relies on potentially sensitive data. As social networks are becoming ubiq-

uitous, the implications to people‘s privacy are not well understood. Privacy in

social networks is a very young field which studies what constitutes an unautho-

rized intrusion in social networks and how to protect sensitive user information.

In Chapter 6 I identify the research problems in privacy in social networks and

give an overview of the research literature on this topic [154]. Part III discusses

our contributions to the field which are in defining two privacy problems and

potential ways to deal with them. Chapter 7 presents the problem of sensitive

attribute inference in online social networks [153], and Chapter 8 – the problem

of sensitive link re-identification in anonymized network data [152].

Our overview of the research literature on privacy in social networks ap-

pears as a book chapter in Social Network Data Analytics [3]. In it, we identify

and formally define the possible privacy breaches and describe the privacy at-

tacks that have been studied. We present definitions of privacy in the context of

privacy mechanisms and anonymization together with existing anonymization

techniques.

The problem of sensitive attribute inference occurs naturally in online social

networks where people have different privacy preferences. While many social

media websites allow users to hide their personal profiles from the public in or-

der to address privacy concerns, this is often not sufficient for guarding personal
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information. In our work, we have shown how an adversary can exploit an on-

line social network with a mixture of public and private user profiles to predict

the private attributes of users [153]. We map this problem to a relational classifi-

cation problem and we propose practical models that use friendship and group

membership information (which is often not hidden) to infer sensitive attributes.

The key novel idea is that in addition to friendship links, groups can be carriers of

significant personal information. We show that on several well-known social me-

dia sites, we can easily and accurately recover the information of private-profile

users. To circumvent this problem, social network users need to be informed of

their privacy risks and social networks need to provide users with means to pro-

tect their data online. This work is complementary to Chapter 2 because it uses

groups for classification though it does not consider higher-order probabilistic

graphical models.

The other problem we have studied is how a data provider can preserve

the privacy of sensitive relationships in graph data [152]. We refer to the prob-

lem of inferring sensitive relationships from anonymized graph data as link re-

identification. We propose five different anonymization strategies, which vary in

terms of the amount of data removed (and hence their utility) and the amount of

privacy preserved. We assume the adversary has an accurate predictive model

for links, and we show experimentally the success of different link re-identification

strategies under varying structural characteristics of the data.

In summary, my thesis proposes new methods for overlaying networks

formed around social and affiliation links of users. The contributions of the thesis
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are in studying the interplay between these two types of networks and showing

that analyzing these higher-order interactions can reveal dependencies that are

difficult to extract from the pair-wise interactions alone. We present the benefits

of overlaying the networks in a variety of settings, including predictive model-

ing, evolution and privacy.
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Part I

Prediction in Social and Affiliation

Networks
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Creating a successful, self-sustaining social media service is a challenge be-

cause of the complexity of social interactions that ensue once the service is in

place. A broad range of issues related to this problem have been addressed in

the literature on social networks, e-commerce, recommendations, rating, collab-

orative filtering, and personalization. Predictive and descriptive models for in-

ferring personal attributes of users are a centerpiece in many personalized online

services. In Chapter 2, we propose a classification framework for social and af-

filiation network data which contains users for which the attribute values, e.g.

gender, political views, location, are observed, and others are unobserved, and

we are interested in predicting the unobserved attributes [156]. In Chapter 3, we

study the problem of inferring latent user characteristics that are not directly ob-

servable for any of the users [157]. The work in both thesis chapters relies on

probabilistic graphical models. Before we present each of the two scenarios, we

provide context for our work by discussing research related to our approaches.

Collective classification

In the last decade, there has been a growing interest in supervised classi-

fication that relies not only on the object attributes but also on the attributes of

the objects it is linked to, some of which may be unobserved [47]. Link-based

or collective classification breaks the assumption that data comprises of i.i.d. in-

stances and it can take advantage of autocorrelation, the property that makes the

class labels of linked objects correlated with each other. Social networks are one
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of the domains where link-based classification can be applied because personal

attributes and roles of connected people are often correlated. For example, politi-

cal affiliations of friends tend to be similar, students tend to be friends with other

students, etc. Comprehensive reviews of link-based classification can be found in

the works by Sen et al. [131] and Bhagat et al. [16].

In a typical classification setting, there are data instances (or nodes) with

two types of attributes - a class and features. The class is an attribute of the nodes

that we are interested to predict, e.g., gender. Features are other attributes of the

nodes, e.g. weight, height, and hair length, which are given as an input to the

classifier. The nodes with observed class labels comprise the training data, and

they can be used to train the classifier to distinguish between the possible class

labels. What distinguishes link-based classification from traditional classification

is that some of the nodes’ features are based on the features or class labels of

neighboring nodes in the network.

Sen et al. define collective classification as a combinatorial problem in which

given the class labels of some nodes in the network, the task is to infer the class

labels of the rest of the nodes. They identify two types of approaches to collec-

tive classification. The first type relies on local conditional classifiers to perform

approximate inference. Iterative classification algorithms [92, 115] and Gibbs

sampling-based algorithms [95, 101] fall into this category. Iterative classifiers

rely on attributes of the nodes, some of which are observed and based on the la-

bels of neighboring node, to infer an initial labeling of the unlabeled node and

then use this labeling to update the node features. This process continues it-
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eratively until the assignment of labels stabilizes or the iterations reach a pre-

specified threshold. Some models use a simplified version of Gibbs sampling

which also relies on local classifiers and iterates through each node and estimates

its probability distribution conditioned on its neighbor labels.

The second type of approach to collective classification is based on defin-

ing a global optimization function. One type of model which relies on a global

optimization function is a pairwise Markov Random Field (MRF) [137], an undi-

rected probabilistic graphical model. In particular, each actor’s attribute in the

social network corresponds to a random variable in the MRF, and each actor-actor

link is considered as a pairwise dependency between two random variables. In-

ference on the MRF can be used for classification of the missing attributes in the

data.

Bhagat et al. [16] recognize a third category of methods for node classifica-

tion in social networks which propagate node labels using random walks. The

assumption in these models is that the probability of a node label is equal to the

probability that a random walk starting from the node in question will end at

another node in the network with that label.

Most of the work on collective classification for social networks concen-

trates on the network formed around the pairwise social links. In Chapter 2 we

propose a framework for collective classification for inferring node attributes in

the presence of group affiliations which induce dependencies which go beyond

pairwise. Our method makes use of the higher-order dependencies induced by

groups affiliations to build a higher-order MRF, and it distinguishes groups that
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are relevant to classification based on group features such as size and homogene-

ity. Our work in Chapter 7 is similar in that it uses groups for classification in a

privacy scenario though it does not consider higher-order probabilistic graphical

models.

Latent variable statistical models

User experience in social media involves rich interactions with the media

content and other participants in the community. In order to support such com-

munities, it is important to understand the factors that drive the users’ engage-

ment. Unlike supervised learning, uncovering latent characteristics requires ex-

tracting knowledge from unlabeled data. In many cases, unsupervised learning

involves clustering objects together based on their similarity. In social networks,

clusters can be found based on attribute and/or structural information. In fact,

attributes, roles and affiliations of people are sometimes caused by the presence

of such hidden clusters or groups in the data [116, 64, 6].

One way to model hidden clusters is through latent variable models. They

have been of particular interest to researchers who study large text corpora. La-

tent semantic analysis techniques provide a powerful means of identifying un-

derlying topics as clusters of terms derived from document-word co-occurrences [32,

60]. Steyvers and Griffiths [135], as well as Blei and Lafferty [19] have written re-

cent overviews of topic models. Goldenberg et al. also present topic models in

the broader context of statistical network models [50].

One popular latent variable model is the Latent Dirichlet Allocation model
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(LDA) [20]. It has been introduced to capture statistical properties of text docu-

ments in a collection and provide a compact document representation in terms

of underlying topics. More precisely, the method assumes that each document

is a mixture of latent topics and uses a three-level hierarchical graphical model

to characterize the statistical relations among terms and documents, resulting in

topics that are represented as clusters of words. We describe the model in more

detail in Section 3.3.1.

The LDA model has gained popularity due to its simple but powerful struc-

ture, and it has been applied to other domains besides topic modeling. Zhang et

al. [151] propose an LDA-based model for identifying latent structures in large

networks, using topological features as the only input. They apply the model

to identify communities in large social networks. A similar model for analyz-

ing graph data is described by Henderson & Eliassi-Rad [58]. Based on LDA,

Bhattacharya and Getoor derive a new model for entity resolution in relational

domains [17].

There are other generative models that combine latent variable modeling

and social network modeling in a single framework. One of the first models in

this space is the stochastic blockmodel for directed graphs of Wang and Wong [142].

Stochastic blockmodels assume that the observed actor-actor links in social net-

works can be explained by latent communities which can be discovered [42].

Airoldi et al. [6] study mixed-membership stochastic blockmodels for clustering

of relational data. It is assumed that the cluster assignment is related to the node

attribute value in question. The infinite relational model discovers latent concepts
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in relational data where the number of such concepts is not known a priori [64]. A

related approach is the one by Neville and Jensen [116]. It discover hidden clus-

ters or groups in the data which influence the attributes of the group members

using a spectral clustering method based on node links in the data.

Some of the work in this space concentrates on citation and collaboration

networks. The mixed-membership model of Erosheva et al. [39] discovers la-

tent clusters based on the document abstracts and the citation network of doc-

uments. The Author-Topic model of Rosen-Zvi et al. assumes that the distri-

bution of latent topics in a document are a mixture of the topic distributions of

the document’s authors [129]. The Author-Role-Topic model, proposed by Mc-

Callum et al. [99], discovers discussion topics in threaded conversations, condi-

tioned on sender-recipient interactions. The Group-Topic model [100] discovers

latent groups in a network and clusters of associated topics based on text. Dietz

et al. [33] present a model for predicting citation influences. The Topic-Link LDA

model of Liu et al. [89] combines the LDA model [20] with the mixed-membership

model of Erosheva et al. [39] to discover latent topics.

In our work, we use hierarchical probabilistic graphical models to derive

latent user characteristics in music communities. In particular, we represent the

song-listening activities in terms of latent tastes and latent listening moods of the

community that are derived from the logs of media usage. For the latent tastes

characterization we adapted the LDA model to the song-listening activities. Ev-

ery instance of song listening is modeled as a finite mixture over the underlying

set of tastes which, in turn, correspond to the clusters of songs derived from the
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listening patterns. For listening moods, we increased the complexity of the model

by incorporating session information. As a result, we arrive at a novel hierarchi-

cal graphical model that exploits additional structure in the data and identifies

latent moods as clusters of songs that emerge from the song-listening sessions

across the community.
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Chapter 2

Collective Classification with Groups

A common assumption in social network analysis is that one can infer a lot

about people from their social environment. A useful task in this type of anal-

ysis is collective classification where the goal is to infer hidden attributes of the

nodes, and the classification algorithm considers not only the local features of

each node in the network but also the features and the class labels of its network

neighbors [131]. In a social network, where nodes represent actors, the actor-actor

links are used to boost the accuracy of local classifiers or even provide classifica-

tion labels in the absence of local features. While most collective classification

algorithms take advantage of the statistical dependencies induced by the actor-

actor links, very little work has been on using actor groups of size larger than

two.

Online affiliation networks contain information about groups that actors

have formed over time. Unlike the clusters resulting from automatic graph clus-

tering of the social network which make certain assumptions about what constu-
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tutes a cluster, online groups are observed affiliations in which the actors have

participated. They provide a clustering of the actors that is completely data

driven and perhaps more informative than inferring groups based on actor-actor

links. Affiliation networks have been shown to have a strong signal for predicting

actor attributes [153].

The goal of our work is to provide a principled approach to classification us-

ing the available data in a model which overlays information from the social net-

work and the affiliation network. We investigate the use of higher-order Markov

Random Field models which exploit the structure of both social and affiliation

networks to perform better classification. Our contributions include identifying

an approach for defining higher-order MRFs based on multi-modal social net-

works and proposing a model selection method informed by the existing struc-

ture in the network.

Relational data, such as social networks, can be modeled as a pairwise

Markov Random Field [137]. In particular, each actor’s attribute in the social

network is a random variable in the MRF, and each actor-actor link is consid-

ered as a pairwise dependency between two random variables. Inference on the

MRF can be used for classification of the missing attributes in the data. To the

best of our knowledge, MRFs which use not only the dependencies coming from

the observed friendship links but also from the observed affiliations have not

been applied to classification tasks in social networks. Yet, the affiliation network

structure provides rich dependencies which go beyond pairwise.

One way of including information from the affiliation network is to intro-
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duce a clique for each group. This approach has a number of challenges. First,

in online social networks both the number and the size of groups can be very

large, and inference on a dense network can be prohibitively slow. Therefore,

it becomes extremely important to learn which groups should participate in the

MRF structure. Second, many MRFs rely on approximate inference algorithms

which have to be tailored to the domain of interest in order to perform well.

Within the computer vision community, there has been a growing body of

work on higher-order MRFs [68]. For example, in image analysis, segmentation

is an important task in which given pixel information, such as color and location,

an algorithm aims to classify each pixel to one of a number of classes, e.g., tree,

sky, ground. Rather than taking the picture as a vector of pixels, pairwise MRFs

encode structural information by considering the dependencies between neigh-

bouring pixels. This has been shown to improve classification because classes of

neighboring pixels are often dependent on each other. However, pairwise MRFs

tend to make mistakes on pixels that are on the edges of image segments, e.g.,

the border pixels separating tree and sky. Incorporating longer-range dependen-

cies between the pixels leads to better solutions. Higher-order MRFs take care of

such dependencies by considering overlapping segments from different segmen-

tation algorithms as cliques [68]. Recently, the computer vision community has

developed inference algorithms that are extremely efficient and can find optimal

solutions for a class of models in polynomial time. We discuss them in Section 2.3.
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2.1 Preliminaries

Online social networks, such as Facebook, Flickr, LinkedIn, etc, allow in-

dividuals to create a profile and link, e.g. ”friend” each other, or ”affiliate” by

joining groups of interest. They include online services which allow users to set

their preferences to online content, such as tagging articles, commenting on pho-

tos and rating movies, to mention a few.

2.1.1 Data model and graphical model

We distinguish between two types of graphs: 1) the data graph, which we

refer as the network G, and 2) the graph of random variables which represents

the graphical model. The social and affiliation network data G = (V,Ev,H,Eh)

consists of n actors V with attributes V.A, and two types of commonly occurring

links - actor-actor links, Ev, and actor-group links, Eh. The groups can be over-

lapping and of various sizes. The graphical model consists of a vector of discrete

random variables X = {X1, X2, ..., Xn} for the actor attribute we aim to classify.

Each variable Xi can take on a number of class labels. A Markov Random Field

model is an undirected graphical model which represents a family of probability

distributions for a random variable vector X given by

Pr(x) =
1

Z
exp(−

∑
c∈C

φc(xc))
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where C is a set of cliques, φc is the potential function for clique c, and Z is the

normalizing constant, known as the partition function. E(x) =
∑

c∈C φc(xc) cor-

responds to the Gibbs energy of a possible variable assignment. Each clique con-

sists of a fully connected set of variables which are statistically dependent. A

potential function is a function which assigns a positive real number to each pos-

sible variable vector assignment in the clique, and we discuss specific potential

functions in Section 2.2.3. In pairwise MRFs, the clique potentials are over pairs

of variables whereas higher-order MRFs can have cliques of arbitrary size.

2.1.2 Problem description

Given a network G in which the values of attribute a are given for some

observed nodes Vo, we would like to find the hidden attribute for the rest of the

nodes in the network, Vh. We concentrate on the case where the group member-

ships and friendship links are given for all nodes, and there are no other node

attributes. The incentive for this is to evaluate the worth of the dependencies

expressed in the network structure alone.

To make this problem more concrete, we construct the graphical model.

First, we partition the random variables into Xo and Xh, corresponding to the

nodes Vo and Vh. We would like to find the most probable assignment of Xh,

given the assignment of Xo. This corresponds to the maximum a posteriori (MAP)
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Figure 2.1: A toy social and affiliation network and its corresponding higher-
order MRF represented as a factor graph.

estimation of Xh:

X̂h = argmax
xh

Pr(Xh|xo) = argmin
xh

E(xh,xo)

Next we discuss how to construct the cliques in the graphical model.

2.2 Graph structure and potentials

Our solution first selects the MRF structure as discussed in Section 2.2.1,

then it bootstraps the MRF model by computing informative node potentials

described in Section 2.2.2. Then, using the node and clique potentials (in Sec-

tion 2.2.3), it performs efficient MRF inference which we overview in Section 2.3.
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2.2.1 MRF structure

There are different ways in which one can construct the graphical model by

incorporating the structure of the network data. Here, we propose four different

constructions. The most naı̈ve way is to include all the friendship links as pair-

wise dependencies in the MRF. Each link ev(vi, vj) in the data corresponds to a

clique of size two, c(xi, xj). This incorporates the idea of homophily in social net-

works, or the tendency of individuals to associate with similar others, by making

class labels of friends dependent on each other. This creates the pairwise Markov

Random Field model, pMRF.

Another possibility is to include the affiliation network by treating each so-

cial group h(V∗) as a clique in the MRF c(X∗), where the random variables in the

clique, X∗, correspond to the group members h(V∗). This leads to our second

model, the higher-order MRF with all groups, hoMRF-AG.

While including all groups may be an enticing idea, some of the social

groups are more informative about certain actor attributes than others, e.g. women

may be more likely to join a social group for breastfeeding advice than men.

Following this idea, we look at group properties and select informative groups,

which leads to our third model, higher-order MRF with selected groups (hoMRF-

SG). We select the set of informative groups in the network based on their ob-

served properties, such as size and entropy of the nodes with observed class la-

bels. Our last model constructs the MRF by using both the pairwise dependencies

from the friendship links and the higher-order cliques from selected social groups
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(hoMRF-SG-AL).

Figure 2.1 shows an example social and affiliation network, together with

its corresponding graphical model. The graphical model is presented as a factor

graph to make the cliques (grey rectangles) over which the potentials are defined

explicit. There are 7 actors with 9 friendship links and 2 social groups. The two

social groups correspond to the two cliques of size 3 and 5 in the graphical model.

Each link has a potential associated with it as well. The class labels of some of

the actors are observed (shaded circles in the graphical model), while the labels

of others are unknown (unshaded circles).

2.2.2 Node potentials

Each node in the MRF is a clique of size one, and it has a unary node po-

tential. For each X ∈ Xh, we compute the potential for each class value to be

the negative log likelihood of the class value according to a linear classifier. The

classifier, such as logistic regression or Naı̈ve Bayes, uses the friendship links and

group memberships as node features. Besides computing the node potentials,

this classifier provides the baseline method in our experiments.

2.2.3 Clique potentials

Possible potentials for cliques of size larger than one are functions of the

counts of class labels, such as majority and sum, negative/reciprocal entropy. We

adopt the Robust P n Potts clique potential of Kohli et al.[68] because it is intuitive
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and it allows efficient inference. This potential is defined as:

φc(xc) =


γk + Ni(xc)

Q
(γmax − γk) if Ni(xc) ≤ Q

γmax else

where γk is the minimum possible potential value if all labels in the clique

are the same, and γmax is the maximum possible potential value if the number

of node labels that are different from the majority class label, Ni(xc), is larger

than a pre-specified threshold, called truncation ratio Q. For pairwise MRFs, this

potential simplifies to the Potts potential. The intuition behind the Robust P n

Potts potential is that it allows disagreement between class labels inside each

clique to a certain extent. Besides being intuitive, this potential is important for

efficient inference using graph-cut based methods which we discuss next.

2.3 Inference and energy minimization

Exact inference in higher-order MRF models is exponential in the size of the

largest clique. There are a number of approximate inference algorithms, e.g., be-

lief propagation, variational inference, MCMC-based techniques, which aim to al-

leviate the complexity burden [63]. In the computer vision community, graph cut

based methods have gained popularity because they have a polynomial complex-

ity when assuming certain potential functions, such as Robust P n Potts potential,

and they work efficiently in practice [68]. Kohli et al. [68] compare the running
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time and accuracy of tree-reweighted message passing (TRW-S) [70] with move-

making inference algorithms which use graph cuts for models with large cliques.

They find that the move-making algorithms are faster and yield better solutions.

A move-making algorithm starts from an initial solution and it makes a

series of moves leading to lower energy solutions. At each step, it searches for

the best possible move within its allowed range and then makes that move. The

algorithm converges when it reaches a state from which it cannot find a lower

energy solution.

Two move-making inference algorithms are α-expansion and α-β swap [21].

A move can be encoded as a vector of binary variables t, one for each unobserved

random variable in the hoMRF, Xi ∈ Xh. In an α-expansion move, each random

variable Xi either retains its current label if ti = 1, or changes it to α if ti = 0. In

an α-β swap move, each random variable Xi ∈ Xh with a current label of α or

β can either retain/change to a label of α if ti = 0, or retain/change to a label of

β if ti = 1. One iteration of the algorithm searches through the space of possible

move vectors to find the one that would lead to the lowest energy solution and

then it makes that move.

Finding the optimal move vector for both the expansion and swap algo-

rithms can be computed in polynomial time using graph cuts. For details, we

refer the reader to Kohli et al. [68]. According to the same authors, the best order-

ing of moves is an ongoing research topic.
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2.4 Experiments

2.4.1 Data description

For our evaluation, we studied a dataset from the social network Facebook1,

available for research purposes [78]. Facebook allows users to communicate with

each other, to form undirected friendship links and participate in groups and

events. The dataset contains all 1, 225 profiles of first-year students in a small

college who share at least one interest group with another first-year student ac-

cording to their Facebook profiles. The interest groups are the favorite books,

music and movies of the users. There are 2, 932 groups, and the largest one has

290 members. There are 51, 389 friendship links in the data. The attribute we are

trying to predict is the gender of each student. Half of the students are female, so

a random guess would achieve an accuracy of 50%.

2.4.2 Experimental setup

We provide results for two-fold cross validation. The node potentials are

computed using the java version of the liblinear logistic regression classifier [150].

For the move-making inference, we adapt the implementation of Kohli et al. [68].

For selecting the groups to be included as cliques in the MRF, we vary the al-

lowed size, entropy and percent of observed nodes per group. First we per-

formed a coarse-grained search through the space of parameters by setting the

minimum group size to {2, 4, 6, 10}, maximim group size to {10, 50, 290}, maxi-

1At http://www.facebook.com.
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mum entropy of the nodes with observed class labels to {0, 0.5, 0.7, 0.9, 1}, and the

minimum percentage of nodes with observed class labels in the group to {0, 0.5}.

This yields a space of 120 experiment points, e.g. point (10, 290, 0, 0.5) means all

groups of size between 10 and 290 with entropy of 0 and at least 50% of node

labels observed. To obtain further improvement, we performed a fine-grained

search around the parameters that yielded the best accuracy in the coarse-grained

search.

We set γmax to 10, γk to 0 for all possible labels, and the truncation ratio Q

to 0.3 after some limited exploration of the parameter space. We set the node

potentials to the negative log probabilities of the class labels coming out of the

linear classifier. In the case of probability of 0, we set it to 10 (which is close to the

negative log of the smoothed out probability). We report on three types of node

features: friendship link vector, group membership vector and a vector which

includes both. We compare the results for the linear classifier (LR), the pairwise

MRF (pMRF) and the variants of the higher-order MRF: hoMRF-AG, hoMRF-SG

and hoMRF-SG-AL.

2.4.3 Results

Table 2.1 summarizes the results from our experiments. The baseline lin-

ear classifier which uses the friendship link vector as features to classify nodes

yielded an accuracy of 64.06%. Using the group memberships, this accuracy

increases to 71.67%. Using both types of features, the accuracy is the highest,
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Table 2.1: Accuracy of the logistic regression baseline (LR), the pairwise MRF
(pMRF), the higher-order MRF with all groups as cliques (hoMRF-AG), with se-
lected groups as cliques (hoMRF-SG) and with selected groups and all friendship
links as cliques (hoMRF-SG-AL).

FEATURES LR PMRF HOMRF-AG HOMRF-SG HOMRF-SG-AL
Friendships 64.06% 64.31% 69.13% 69.22% 69.22%
Groups 71.67% 71.83% 69.80% 74.12% 74.53%
Both 75.75% 75.84% 69.63% 77.39% 78.37%

75.75%. Our observations on the comparison between the linear classifier and

our proposed models can be summarized as follows:

1) Using all groups naı̈vely as the cliques in the hoMRF (hoMRF-AG) im-

proves performance only when the node potentials are bootstrapped with the

friendship links as features alone. In the other two cases, where the node poten-

tials use the group memberships as features, hoMRF-AG is not able to exploit the

affiliation network structure further and it even hurts performance.

2) pMRF improves accuracy only marginally (0.09−0.25%) compared to the

baseline.

3) Adding selected groups as cliques in the MRF increases the prediction ac-

curacy in all cases (1.64− 5.16%). Moreover hoMRF-SG consistently outperforms

LR for the different folds of the cross validation. This means that the higher-order

MRF is able to exploit the affiliation structure twice, once as features in the node

potentials, and a second time by using informative groups as cliques. We re-

port on the group selection experiment with the highest average accuracy in the

hoMRF-SG column of Table 2.1.

4) hoMRF-SG-AL which adds the friendship links as pairwise cliques to
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hoMRF-SG did not improve the accuracy of hoMRF-SG when using friendship

links as features. However, when the node potentials were using group mem-

berships or both types of features, the accuracy of hoMRF-SG-AL is higher than

hoMRF-SG, by 0.41% and 0.98%, respectively.

The common theme in the parameter values for the best performing hoMRF-

SG is that the selection criteria based on entropy are irrelevant to accuracy and

that very small groups are uninformative. More concretely, for the friendship

link features, the experiment points of group selection which yielded the high-

est accuracy were (5, {30, 40, 50}, any, 0). In the strictest case (one with smallest

number of groups as cliques), (5, 30, 0, 0), with only 290 cliques out of the 2, 932

groups, it is possible to achieve 5.16% improvement from the baseline. Similarly,

the experiment points with the highest accuracy (74.12%) for the group member-

ship features is (6, {40, 50}, any, 0). In its strictest case, (6, 40, 0, 0), this includes an

average of 201 cliques out of the 2, 932 groups. Lastly, the highest accuracy using

both types of features in the hoMRF-SG was at experiment points (8, 30, any, 0). In

its strictest case, (8, 30, 0, 0), this includes an average of only 100 cliques. Learning

the best parameters from data is left for future work.

We also experimented with setting weights for the clique potentials based

on the feature weights of the linear classifier since the node features and the

graphical model cliques have a one-to-one correspondence. However, this did

not provide any increase in accuracy.

The approximate inference in the hoMRF is very fast, and it takes less than

2 seconds to run on our dataset using a machine with 3.2 GHz processor and 3
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Gb of RAM.

2.5 Conclusion

This is a preliminary study on the application of higher-order MRFs to clas-

sification in social and affiliation networks. We used recent advances in the com-

puter vision community to ensure fast and accurate approximate inference re-

sults. In this study, we were relying on the given, noisy structure of the data to

find the graphical model structure using feature selection criteria based on the

group properties. In our future work, we would like to explore principled struc-

ture learning algorithms which incorporate the knowledge of the existing struc-

ture in the network data in various ways. In addition, we would like to apply

this method to other real-world and synthetic datasets, in order to understand its

properties better.

37



Chapter 3

Discovering Latent User

Characteristics

Next, we present our work on discovering latents user characteristics in

social media in the context of online music communities [157]. With broad prolif-

eration of online social networks around media content, there is an increased in-

terest in analyzing interactions among users and characterizing their behavior in

terms of the individuals’ and community preference for specific types of content.

Among the popular and ever-growing social media sites centered around mu-

sic are Last.fm, Zune Social, Flotones, JamNow, Haystack, Midomi, Sellabound,

MySpace, Mercora radio, iLike, MusoCity, Sonific, and iJigg. Many of them in-

clude features that encourage social interactions by providing personalized rec-

ommendations to influence media selection of individuals. Furthermore, they of-

fer community-based recommendations and interfaces for browsing and search-

ing for available content.
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For such complex systems, it is important to develop techniques that can be

used to describe and study processes that drive the observed user engagement.

Such methods need to be able to handle large-scale data logs from social media

services and, therefore, produce effective representations of media consumption

in order to enable efficient processing. In this chapter we use the example of mu-

sic listening to demonstrate how that objective can be achieved. We illustrate an

effective representation of usage data that can be applied to enhance individual

user’s experience, e.g., by recommending songs for the user’s playlist that are

relevant for the current music-listening session. Considering the large number of

users and songs, such contextual recommendations require highly compact data

representations.

Selecting a suitable song descriptor is an important initial step. We observe

that many media services provide a static taxonomy of media types or genre. Such

taxonomies serve as the means for individuals to express their interests and find

adequate media. They provide media categories that are commonly adopted by

the user community and, thus, could be used to characterize user’s song-listening

behavior, e.g., as a probability distribution over clusters of same-genre songs.

The genre also captures an essential aspect of the song-listening process: while a

person may not necessarily wish to repeat the same song, the person is likely to

choose the next song to play from the same or a related genre.

On the other hand, even basic genre taxonomies may have a large number of

categories and lead to sparse and ineffective representations of listening patterns.

Thus, we aim to create a compact representation of media listening that retain
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the essential statistical properties and relations among data. For that purpose

we choose to derive generative probabilistic models based on the logs of song-

listening and control the number of the underlying media clusters.

The contributions of our work are:

• A systematic approach to characterizing social media processes that drive mu-

sic listening patterns

• A novel graphical model which provides a compact representation of the me-

dia based on listening sessions

• A model that has better predictive properties and enable faster inference than

other known models.

More precisely, we define graphical models with latent variables that are

intuitive and appropriate for modeling song listening. The first model captures

the collective music taste as a set of tastes or media preferences that a particular

community develops. We use them to characterize song listening by an individ-

ual user as a finite mixture of the underlying tastes. The second model captures

the listening moods across listening sessions of the users in the community. In such

a model, an instance of song listening by a user is described as a finite mixture of

the underlying set of listening moods. In both cases we can vary the model param-

eters and explore the effect that different number of derived tastes and moods

have on the model quality. In particular, we demonstrate the computational effi-

cacy and compare the perplexity of the two models.

Our work is the first to utilize a hierarchical graphical model to incorpo-
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rate listening moods based on session information. By applying the models to

half a million song-listening instances from the Zune Social1 music community,

we demonstrate a clear advantage of using a more refined model to achieve both

better perplexity for the co-occurrence of genres in sessions and higher compu-

tational efficiency. Although we introduced and evaluated it in the context of

song listening, the same model can be applied to a broad range of scenarios, from

browsing sessions on YouTube or Flickr to characterizing the sentiment and top-

ics of blog-posting within given periods of time.

In the following Section 6.4 we provide background on graphical models.

We then discuss the social media context in Section 3.2. In Section 7.3 we describe

the data and define the hierarchical graphical models. In Section 8.5 we present

experimental results and then reflect on broader implications of our work in Sec-

tion 7.5. We conclude with a summary of our contributions and directions for

further work.

3.1 Background

Here we provide context for our work by discussing related research on user

modeling and song recommendations. Then we provide background information

that is pre-requisite for the models we explore.

1http://social.zune.net/.
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3.1.1 Related work

User modeling

An individual’s taste and mood are two factors that are likely to influence

consumption of media and social interactions. Thus, characterizing them in an

effective manner is invaluable for personalizing retrieval, classification, and rec-

ommendation of media content. However, the variability and subjective nature

of these notions makes it difficult to describe them in a systematic way. Nonethe-

less, there have been efforts to characterize mood as a property of songs and the

effects they may have on listeners.

Feng et al. [43] attempt to detect mood of songs from their acoustical fea-

tures such as tempo and articulation. Liu et al. [83] use intensity, timbre and

rhythm instead. Hu & Downie [61] study the relationship between mood and

music genre, and mood and artists. In all these cases, the researchers proposed

taxonomies of mood types. Feng et al. [43] define four mood labels: happiness, sad-

ness, anger, and fear for training a music classifier. Liu et al. [83] use a mood model

that characterizes emotions along two dimensions, energy and stress. They de-

fine four mood quadrants: contentment, depression, exuberance, and anxious/frantic

and use them as labels for mood detection in music using a framework based on

Gaussian mixture models. Hu and Downie [61] derive a set of five mood clusters

from the All Music Guide2 mood repository to examine the correlation between

music genre and mood and artist and mood.

2At http://www.allmusic.com
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The results of this approach are of limited utility because comprehensive,

generally accepted, and universally applicable taxonomies for taste and mood

do not exist and are difficult to conceive. That would require an in-depth un-

derstanding of human emotions, mapping out a wealth of human relations to

the external world, and providing a reference scale to measure the intensity of

emotions that could be applied in an objective manner.

In our approach, we derive a latent mood rather than a priori specifying the

mood as a property of the music. We use the terms music taste and listening mood

to describe the users’ affinity to listen to specific groups of songs as observed from

the listening patterns of the whole community. For listening moods we derive

the song clusters from the media selection within and across listening sessions,

where a session is determined by a threshold of idle time, i.e., a pause between

two consecutive songs.

Song recommendations

Ragno et al. [126] address the problem of recommending songs to the user

based on a seed song that the user has listened to, with the aim to generate a com-

plete playlist that fits the user preferences. It is assumed that the user wishes

to listen to songs that are, in some sense, similar to the seed song. In [126] the

authors use multiple radio broadcast streams to determine song proximity and

define a graph representing the song-similarity. Automatic playlists are gener-

ated through random walks of this graph starting on a given seed song. There

are many other approaches for automatic playlist generation (e.g., [122, 124]). In
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[122], Pampalk et al. use audio similarity and feedback from users, in the form

of accepting or skipping a song recommendation, to define a set of heuristics for

playlist generation. In [124], Platt et al. learn a Gaussian Process kernel to predict

user playlists using music metadata such as genre or style as input.

The recent work on recommender systems by Stern et al. [134] proposes a

probabilistic rating model which combines collaborative filtering and item meta-

data for predicting items that may be of interest to a given user. Marlin et al. [97,

98] also use graphical models for the task of rating prediction. Hoffman et al. [59]

propose a probabilistic model which uses audio features to predict song tags.

3.1.2 Preliminary concepts

Graphical models and factor graphs

Factor graphs are a useful way of representing probabilistic graphical mod-

els [90]. They consist of two types of nodes representing variables and factors,

respectively. Figure 3.3 and Figure 3.4 show examples of factor graphs with

standard notation where variables are represented as round nodes and factors

as square nodes. In a probabilistic model, the factors refer to probabilistic dis-

tributions, deterministic functions, or constraints. Graphically, the factor nodes

connect only to variable nodes that are arguments of the factor. The factors are

multiplied together to give an overall distribution function. In this sense, a factor

graph is a visual representation of the dependency structure among variables in

the overall distribution. In case of generative models, for example, we aim to ex-
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plain the observed data and typically arrive at a rich dependency structure where

latent and observed variables are generated from parent variables via a factor. In

Section 7.3 we describe in detail the generative processes inherent in our listen-

ing taste and mood models and demonstrate how both the generative process

and the joint probability distribution can be directly read off the corresponding

factor graphs.

Factor graphs utilize additional notation that simplifies the visual represen-

tation such as plates (see for example [18]) which represent replicated parts of the

model, and gates [107] which represent parts of the model that are switched on or

off depending on the value of a random variable. Plates are shown as rectangles

with a solid boundary line, and gates are shown as dashed rectangles, with the

gating variable attached to the rectangle rather than to the variables inside. The

factors inside the gate are switched on or off by the value of the gating variable.

3.1.3 Inference in factor graphs

While useful for visualizing relationships and conditional independence

among variables, factor graphs are particularly important as a framework for

describing message-passing algorithms for performing inference. In this chapter

we make use of a message-passing algorithm for approximate inference called

variational message passing (VMP) [144]. This is one of a class of algorithms that

are given a unified treatment in [105].

These algorithms typically make use of a fully factorized approximation of
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Figure 3.1: The two-level genre taxonomy of Zune Social. Genres have sub-
genres. Examples of sub-genres are shown only for the genres Rock and Classical.

Figure 3.2: Log data for two users and their corresponding music-listening ses-
sions and media items.

the joint probability distribution; i.e. a factorization of each factor itself into uni-

variate factors. For each factor in the graph, the algorithm will calculate outgoing

messages from the factor to each variable; each message is in the form of a uni-

variate distribution over the target variable, and is calculated from the factor itself

and all the incoming distribution messages via an update equation which mini-

mizes a local divergence measure. The factorized approximation to the factor is

given by the product of the outgoing messages.
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These message-passing algorithms are fast and also have the benefit that

calculations are local, so complex models can be pieced together with reusable

building blocks — the Dirichlet and Discrete factors in (Figure 3.3 and Figure 3.4)

are two such building blocks, as are the message update equations to deal with

plates and gates. Infer.NET [106], which we use to perform inference in our mod-

els, is a framework which makes good use of these considerations to provide a

variety of message-passing algorithms for graphical models.

3.2 Social media context

In this section we motivate the work through the example of a specific social

media service.

3.2.1 Social media description

For the purposes of our study we consider the Zune Social music commu-

nity and analyze the data set that comprises 14 weeks of usage logs. For each reg-

istered user the Zune Social service maintains a user profile with a list of songs

that the user has listened to on the Zune device or via Zune software installed on

a personal computer.

The Zune Social community members can rate songs, establish friendship

links, and recommend songs to each other. Songs are classified using a two-level

genre taxonomy. Figure 3.1 shows all 17 top level genre categories and the second

level categories for two specific genres, Rock and Classical. The full taxonomy can
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be found on the Zune Social website.

Our objective is to capture users’ listening affinities as reflected in the data

logs. Thus, we make a concerted effort to clean the usage logs of accidental data

access and playing of songs. For each user we consider only those instances

where the user listened to a song and rated it positively. This set could be easily

expanded using different heuristics. For example, one could include songs that

have no ratings but are listened to multiple times by the user. Analysis of our data

shows that, on average, the rated songs are listened to 3.62 times. In comparison,

the average/mean across all the songs is only 2.26 times.

We assume that the users listen to songs during listening sessions and we

employ a simple segmentation technique to specify the session boundaries. We

study the distribution of time intervals between the start times of consecutive

songs played by the same user. We identify the peaks and use them as thresholds

for determining the start of the new session. We observed a few prominent peaks

in the distribution. One of the peaks corresponds to the average song length (3.67

minutes).

3.2.2 Terminology and data representation

Let U = {u1, ..., un} represent a set of users and M = {m1, ...,mk} represent

a set of media items that the users can listen to. A media item can be a song

genre, an artist or a particular song. For ease of representation and without loss

of generality, we will refer to a media item as a song. Each song-listening in-
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stance (u,m, t) represents user u listening to song m at time t. In order to define

listening sessions, we define an interval as the time difference between the start

times of two consecutive songs for the same user. Alternatively, one can define

an interval as the time difference between the end time of one song and the start

time of the next song but we chose the former definition because we did not have

information of the song end times in our data. A session S = (m1, ...,ml) is then

a sequence of l songs that the user u has listened to, such that the interval be-

tween every two consecutive songs mi and mi+1 is below a specified threshold

pthreshold. The playlist Su of each user includes a sequence of song-listening ses-

sions Su = (S1, ..., Stu) = (m1, ...,mN). Note that, for the same user, a song can be

repeated both in the same session, and across sessions. We also assume that there

are latent media clusters C = {c1, ...cn} which explain the co-occurrence patterns

of songs that users play, and they provide a soft clustering of the media items M .

Thus, for each cluster ci, there is a distribution ψi over the media items M .

Figure 3.2 shows an example of the data model. The table shows the log of

two users u1 and u2 who have listened to 5 media items at different time points.

The log data is visualized as a tree, showing the segmentation into sessions based

on the time interval threshold. This threshold can be predefined or learned from

data. This example shows some patterns: session S2 of user u1 is the same as

session S1′ of user u2, and session S1 of user u1 is similar to session S3′ of user

u2. The goal of our work is to find and characterize such patterns.
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3.3 Statistical models

Here we describe in detail the taste model, and also our session model which

extends the taste model and captures the listening mood across song-listening

sessions.

3.3.1 Taste model

Following the LDA model [20], we define a probabilistic graphical model

that represents consumption of media as a distribution over a set of latent media

clusters, referred to as ‘tastes.’ Each taste media cluster is represented as a distri-

bution over the songs. The model generates each song m in the user’s playlist Su

by picking one of the media clusters c, and then picking a song from that media

cluster’s mixture ψ. We refer to this model as the taste model because each media

cluster represents a particular taste. It is a direct adaptation of the LDA model.

A factor graph of the model is shown in Figure 3.3 where the rectangles

indicate plates of users, songs of a user, and media clusters. For each user, and

each song in the user’s playlist, the variable c switches on a particular media

cluster, and switches off the others. Algorithm 1 describes the generation of a

playlist Su for each user u.

Dir(α) is an exchangeable Dirichlet prior, i.e., all pseudo-counts are iden-

tical and given by the parameter α. θ(u) ∼ Dir(α) is the parameter vector for

a user-dependent Discrete distribution over media clusters. Dir(β) is also an

exchangeable Dirichlet prior and ψ(c) ∼ Dir(β) is the parameter vector for a
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Figure 3.3: Factor graph of the Taste model.

Figure 3.4: Factor graph of the Session model.

cluster-dependent Discrete distribution over songs.

The number of media clusters K is fixed in advance but this constraint can

be alleviated as discussed by Blei et al. [20]. According to this model, the joint

probability distribution of the distributions ψ over songs, the distributions θ over

clusters, the cluster choice c for each user and song, and the songs in user u’s

playlist Su = (S1, ..., St(u)) = (m1, ...,mN), is:
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p(m, c, ψ, θ|α, β) =
n∏
u=1

p(θu|α)
N∏
j=1

p(muj|ψ(cuj))p(cuj|θu))
K∏
k=1

p(ψk|β).

We then observe (m1, ...,mN) and perform Bayesian inference to recover the pos-

terior marginal distributions of ψ and θ.

Algorithm 1 Taste model
1: for each media cluster k do
2: Choose a distribution over songs, ψk ∼ Dir(β)
3: end for
4: for each user u do
5: Choose a distribution over media clusters, θu ∼ Dir(α)
6: for each song in the user’s playlist Su do
7: Choose a media cluster cuj ∼ Discrete(θu)
8: Observe song muj ∼ Discrete(ψ(cuj))
9: end for

10: end for

3.3.2 Session model

We use the session model to detect music-listening moods as exhibited in

song-listening sessions. Mood is a latent variable in the session model. The model

assumes that each user is represented as a distribution over different moods, and

for each session, there is a latent mood which guides the choice of songs. A factor

graph of the model is shown in Figure 3.4. Here, the media cluster c represents

the mood as a mixture of songs.

The session model assumes that ψ(c) for each mood c is picked fromDir(β).

Algorithm 2 describes the generation of each user’s playlist Su.
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Algorithm 2 Session model
1: for each media cluster k do
2: Choose a distribution over songs ψk ∼ Dir(β)
3: end for
4: for each user u do
4: Choose a distribution over media clusters θu ∼ Dir(α)
5: for each session Si ∈ Su do
6: Choose a media cluster cui ∼ Discrete(θu)
7: for each song in the session do
8: Observe muij ∼ Discrete(ψ(cui))
9: end for

10: end for
11: end for

The joint distribution is:

p(m, c, ψ, θ|α, β) =
n∏
u=1

p(θu|α)
tu∏
i=1

p(cui|θu)
li∏
j=1

p(muij|ψ(cui))
K∏
k=1

p(ψk|β)

When there is one song per session (each song in the playlist has its own

session), then the session and taste models are equivalent. As the number of

songs per session grows, inference for the session model gets faster than inference

on the taste model because it has fewer random variables. In other words, the

cluster variable c is picked only once per session and it remains the same for all

the songs in the session, whereas in the taste model, c is picked every time a song

is generated.

The session model embodies the finer level structure in the data. Just as the

LDA model, the session model can be applied to a corpus of documents and

capture word pattern on the sub-document level. For example, by constraining

words within chunks of the document, e.g., paragraphs, to belong to the same
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topic, we begin to identify topic patterns associated with paragraphs. Again, an

important advantage is the simplified inference and, consequently, the ability to

process large document collections efficiently.

3.4 Evaluation

We present results for the problem of playlist generation and discuss the

characteristics of the media clustering approach by visualizing the genres per

cluster, comparing the discovered latent clusters with the genre taxonomy, inves-

tigating the sensitivity of the clustering to the number of pre-specified clusters,

and measuring the time performance of the models. We represent each song-

listening instance in terms of the corresponding song genre. Since each song can

belong to one or more music genres g ∈ G, for each song-listening instance, there

are multiple genre instances. We use this media representation to study the con-

nection between the latent media clusters that correspond to listening mood and

taste and the song genres. Furthermore, we can explore the usefulness of our

models for generating song playlists of individual users. We do that by predict-

ing the genre of the song that the user may want to hear next during the listening

session, considering the few seed songs that the user has already listened to. By

identifying the desired genre we provide a good foundation for selecting specific

songs to present to the user.
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3.4.1 Data sample

We train and evaluate the models using a sample of 2, 014 users who have

listened to songs that belong to 84 different music genres. From the 14 weeks

of data, we use the first two months as training data to learn the parameters of

each model and the rest as the test data. Considering the song-listening instances

in the training data we arrive at 239, 425 genre instances and 14, 703 sessions us-

ing a time interval threshold of 30 minutes and no restriction on the number of

songs per session. The test data contains 248, 631 genre instances in 5, 079 sessions

which contain at least 11 genres. We control the minimum number of genres per

session in order to allow testing the session model with 5 and 10 seed songs. The

sample includes all users who have joined the Zune Social service in the studied

period, and whose playlists include between 120 and 200 different music artists.

3.4.2 Inference

We implemented the statistical models using Infer.NET, an efficient, general-

purpose inference engine for graphical models [106]. Since exact inference is

not possible in the taste and session models, we used variational message pass-

ing [144] for learning the parameters of each model.

We fixed β = 0.5 and α = 1.5
K

. β was set to give the best performance for the

baseline test model (see Section 3.4.3), and the same value was used for the taste

and session models. The value of αwas set based on limited manual optimization

with respect to the taste model and adopted for the session model as well.
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Figure 3.5: Factor graph of the baseline, unigram model.

3.4.3 Results for playlist generation

We evaluated the proposed session model by comparing its performance

in terms of model perplexity to that of the taste model on the task of playlist

generation for a song-listening session. Besides these two models, we consider

a unigram model as a simple baseline model that does not consider latent media

clusters and learns each session distribution over genres independently. First, we

present the unigram model in more detail and then we describe the experimental

setup and results.

Baseline test model

In the unigram model the genres in each music-listening session are drawn

independently from a single discrete distribution that describes the session. A

factor graph of the model is shown in Figure 3.5. Algorithm 3 shows the genera-

tive process.

Here, Dir(β) is an exchangeable Dirichlet prior and ψ is the parameter vec-

tor for a Discrete distribution over songs. During inference, it learns the distribu-
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Figure 3.6: Factor graph of the test model for evaluating the session and taste
models.

Algorithm 3 Unigram model
1: for each session Si ∈ S do
2: Choose ψi ∼ Dir(β)
3: for each song in the session do
4: Observe mij ∼ Discrete(ψi)
5: end for
6: end for

tion over genres based on the seed songs in the session and uses it to predict the

genres of the remainder of the songs in the session.

The joint distribution for session Si is

p(ψi,m|β) = p(ψi|β)

li∏
j=1

p(mij|ψi)

This model assumes that sessions are independent of each other and, unlike the
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(a)

(b)

Figure 3.7: Comparison of the perplexity of each model for session genres after
observing a) 5 seed genres and b) 10 seed genres.
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Figure 3.8: Session model perplexity for session genres after observing 5 or 10
seed genres.

taste and session models, it does not consider latent media clusters.

Test model

The taste and session models learn the posterior distributions for their pa-

rameters from the training data. These posteriors are used as priors in the testing

phase. In the testing phase, the model “observes” the first few seed songs, in our

case 5 or 10 songs in a test session, it infers the posteriors of the model parameters,

and then finds the likelihood of the genres for the rest of the session songs.

Figure 3.6 shows a factor graph of the test setup for the session and taste

models. In the test setup, αu is the pseudo-count vector of the posterior Dirichlet

distribution for θu from the training model, where u is the user whose listening

session is used as a test. Similarly, for each cluster, β is the pseudo-count vector

of the posterior Dirichlet distribution for the ψ of that cluster, derived from the

training model. Performing inference on the test model then finds the posterior
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Figure 3.9: Resulting media clusters for the session model. Line thickness signi-
fies cluster affiliation strength.

Dirichlet distributions for θ, the session’s distribution over clusters, and ψ, the

cluster’s distribution over genres, based on a few seed songs (Seed song plate in

Figure 3.6). Then the log-likelihood is calculated for the genres of the remaining

session songs.

Performance metric

In order to assess which model explains the co-occurrence of song genres in

listening sessions better, we compare the perplexities of the three models. Per-

plexity is an entropy-based score assigned to a probabilistic model and com-

monly used to evaluate topic models such as LDA [20]. It captures how well

a model trained on observed data predicts unobserved data. The lower the per-

plexity of a model, the better its predictive power. We report on the perplexity of

each model on the test data:
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Perplexity = exp(
n∑
u=1

∑
S∈Su

size(S)∑
i=seed+1

1

G
ln(p(mi|ψ(cui))))

Computing the perplexity involves finding the log-probabilities of genres in each

test session, excluding the seed song genres, and averaging over the number of

genre instances G.

Results

Figure 3.7 shows the perplexity scores for the three models: baseline, taste

and session models. The session model has consistently lower perplexity than

both the baseline and the taste model for the number of clusters between 2 and

50. That means it models better than the other two the patterns of co-occurring

genres within the same music-listening session. The lowest perplexity of the ses-

sion model occurs at 21 clusters for 5 seed songs (9.51), and at 20 clusters for

10 seed songs (9.14), while the lowest perplexity of the taste model occurs at 2

clusters (with perplexity of 18.74 for 5 seed songs, and 17.77 for 10 seed songs).

The baseline model perplexity is 43.22 and 41.32 for 5 and 10 seed songs, respec-

tively, and it is constant since it does not assume any latent clusters. These results

imply that for the problem of playlist generation, it is better to consider the lo-

cal patterns across sessions, as captured by the session model, rather than global

patterns characterized by the taste model.

Figure 3.8 shows the results for the session model in more detail. It shows
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that the predictive power of the model increases as we increase the number of

clusters up to 20− 21 clusters, depending on the number of seed songs.

3.4.4 Characterizing latent media clusters

We can visualize the affinity of genres to clusters by looking at the distribu-

tion of each media cluster over the genre categories. Figure 3.9 shows how genres

are associated with listening mood clusters produced by the session model. In the

graph we show connecting edges only if the normalized Dirichlet posterior of a

genre in the media cluster is more than 0.25. The thickness of the edge reflects the

strength of the genre affiliation with the cluster.

We observe that some latent clusters of genre resemble the groupings of

genre in the taxonomy shown in Figure 3.1. Indeed, media clusters 8 and 11 have

similar genre grouping as the top genre categories Latin and Electronic/Dance,

respectively. On the other hand, the media cluster 6 comprises a mixture of high-

level genres: Electronic/Dance, R&B, Pop and World.

Comparing latent clusters with taxonomy

In Section 3.4.4 we showed that, in some cases, the collection of genres as-

sociated with a listening mood corresponds to one of the top-level genres from

the Zune Social taxonomy. For other moods that is not the case. Here, we exam-

ine how close a media clustering is to the genre taxonomy, i.e., we estimate how

well the static genre taxonomy reflects the listening patterns that emerge from the

users’ behavior in the social media. The taxonomy itself can be considered as a
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collection of clusters where two sub-genres are in the same cluster if and only if

they have the same parent genre.

Similarity metric

To compare two media clusterings, we employ a similarity metric based on

the Mallows distance [96, 161]. This measure is well-suited for comparing cluster-

ings in which the clusters are soft and exchangeable, i.e., it is not known before-

hand which pairs of clusters to compare. Zhou et al. [161] discuss the advantages

of this measure over other measures for clustering similarity, such as pair count-

ing, set matching and variation of information. The Mallows distance measures the

difference between two multivariable probability distributions, and it can be in-

terpreted as an optimal cluster matching scheme between two clusterings C1 and

C2:

Mallows(C1, C2) = min
wk,j

K∑
k=1

J∑
j=1

wk,j

N∑
i=1

|pi,k − qi,j|

with the constraints that wk,j ≥ 0,
K∑
k=1

wk,j = βj ,
J∑
j=1

wk,j = αk for all k, j. To

compute the Mallows distance, one has to solve an optimization problem using

linear programming. It yields a global optimum which is unique.

In our case, the computation involves the pseudo-counts for the media clus-

ter posteriors. For each genre, we normalize across clusters to get pi,k where i is

a genre index and k is a cluster index. Similarly for qi,j . Then, we find the to-
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Figure 3.10: Mallows distance between the genre taxonomy and the clusterings
found by the taste and session models.

tal count for each Dirichlet and normalize across clusters to get the αk and βj .

For the optimization part, we apply linear programming using Microsoft Solver

Foundation3.

Cluster comparison results

Figure 3.10 shows that, as the number of clusters increases, the similarity

between the genre clusters derived by the session or taste model and the Zune

genre taxonomy increases as well. For a range of cluster numbers, the Zune genre

taxonomy is slightly more similar to clusters resulting from the taste model than

from the session model. However, for both models the resulting genre clusters

are different from the original genre taxonomy. Thus, the clusters provide alter-

native groupings of genre categories that reflect the usage of mobile media and

the preferences of the community, as confirmed by the perplexity results in Sec-

3http://code.msdn.microsoft.com/solverfoundation.
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Figure 3.11: Sensitivity of the models to the pre-specified number of clusters.

tion 3.4.3.

3.4.5 Sensitivity to number of clusters

In this section, we conduct a simple experiment to investigate how sensitive

the models are to the pre-specified number of clusters. For that, we look at the

similarity between clusterings that correspond to successive numbers of clusters.

For example, we measure whether a clustering with 15 media clusters is very

different from a clustering with 16 clusters. It is of interest to know how the

similarity between them changes and whether the clusterings converge. We use

the Mallows distance as the similarity score. The larger the Mallows distance

between two successive clusterings, the more sensitive the clustering model is to

increasing the pre-specified number of clusters.

Figure 3.11 shows that when we increase the number of clusters, the sensi-

tivities of both the taste and session models decrease, i.e. the clusterings become
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Figure 3.12: Model training time.

more similar to each other. However, for low numbers of clusters, the clusterings

are very different from each other. For example, the distance between the clus-

terings produced for 2 and 3 clusters is 33.2 for the taste model, and 19.5 for the

session model.

3.4.6 Time performance of the models

One of the important aspects of statistical models is the computational time

required to train the models. Our comparison of the taste and session models

confirms that training of the session model is faster. As expected, for both models

the training time increases linearly with the number of clusters. However, the rate

of increase differs. On our data sample, inference using the session model is 3.7

times faster than for the taste model as Figure 3.12 shows.
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3.5 Discussion

Reflecting on the experimental results, we consider possible application sce-

narios. In music communities such as Zune Social or Last.fm, our approach can

be used to enrich user experience. Through media clustering, the service can

provide song recommendations based on the collective community tastes and

listening moods. As we have shown, the session model can facilitate the playlist

completion based on previous listening sessions or several songs that the user

has just listened to. Indeed, this can be presented as an improved shuffle feature

offering a selection of song snippets as short previews during a listening session.

The shuffle could adapt based on the user’s mood. Furthermore, as an added

benefit to identifying media clusters, our models produce groupings of individ-

uals with shared tastes and moods. This information can be leveraged to suggest

new friendship ties between users in the social media community.

From the perspective of the service architecture and optimization, cluster-

ing media content can contribute to improved load balancing and more efficient

content access. Since social media services can involve millions of users on a

daily basis, it can be beneficial to distribute service requests across several servers

based on appropriate media clusters.

From research point of view, it would be interesting to study user inter-

pretations of the discovered media clusters. It would be valuable to investigate

whether latent media clusters, representing for example moods, correspond to

different experiences that the users may be able to articulate.
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3.6 Conclusion

In this thesis chapter we presented a novel and improved statistical model

for finding latent user characteristics in consuming social media content. By tak-

ing into account information about the listening sessions of individual users in a

music community, we arrive at a new, session-based hierarchical graphical model

that has lower perplexity and a shorter training time than alternative approach

based on the standard LDA model.

Using the data from the Zune Social music community, we show how gen-

erative probabilistic models enable us to capture latent variables that drive the

consumption of media. In particular, we adapted the LDA model to capture the

taste in music and we define a session based model that captures the user mood

in listening sessions. Thus, an instance of song listening can be represented as a

finite mixture of the underlying tastes that have been discovered through statis-

tical modeling. Similarly, a song listening within a session can be modeled with

respect to the latent moods that the session model generates. Both taste and mood

are essentially media clusters that are identified from the statistical analysis of the

media usage.

In Zune Social the songs are classified using a fixed two-level taxonomy

of music genres. We use genre to characterize the individual songs, and the re-

sulting taste and mood media clusters are represented as genre distributions. In

our analysis we conclude that both the taste and mood-based clusterings derived

from usage data differ from the static taxonomy. Thus, they offer alternative
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genre taxonomies, informed by the community listening patterns. Furthermore,

we show that the resulting clusters can be used for playlist generation. The ser-

vice can thus recommend songs based on a few songs that the user has already

listened to.

Our future work will focus on refinements of the session model to capture

additional aspects of song listening. One such aspect is listening ‘saturation’ that

requires extending the model to include a ‘decay factor.’ We also intend to explore

application and evaluation of the session model in contexts other than online

media consumption.
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Part II

Social and Affiliation Network

Growth
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Besides predicting user characteristics for better personalization of online

services, there is a growing interest in understanding what drives the users’ en-

gagement in online social media, and consequently, the growth and evolution of

online social and affiliation networks [23, 103, 120, 119, 133]. In this part of the

thesis, we propose two models for overlaying social and affiliation networks in

order to understand social network growth. Chapter 4 looks at the global changes

in the network structure. We present a generative co-evolution model for social

and affiliation networks which captures the statistical properties of real-world

networks [158]. Chapter 5 looks at the related problem of link prediction which

uses local properties of the social and affiliation network to predict new social

links between users [155].

The evolution of social and affiliation networks exhibits a number of prop-

erties previously studied in the literature. We describe some of them in Sec-

tion 4.2.2, as well as novel properties that we have discovered. Albert and Barabaási

give an overview of the statistical mechanics of evolving networks [128], and

McGlohon et al. [103] provide a more recent survey on the statistical proper-

ties of online social networks. The majority of literature on analyzing network

properties has focused on friendship networks, or actor-actor networks in gen-

eral. Studying the static snapshots of graphs has led to discovering properties

such as the ‘small-world’ phenomenon [143] and the power-law degree distribu-

tions [10, 40]. Time-evolving graphs have also attracted attention recently, where

interesting properties have been discovered, such as shrinking diameters, and
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edge densification [77].

There have been a number of network evolution models proposed to cap-

ture statistical properties of social networks. For a survey, one can consult the

work by Chakrabarti and Faloutsos [23], as well as by Myra Spiliopoulou [133].

The survey on statistical network models by Goldenberg et al. [50] also covers

the history of network evolution models. For example, unlike the random graph

model of Erdős and Rényi [121], the preferential attachment model proposed

by Barabasi et al. [10] captures power-law degree distributions. The forest fire

model [77] also captures the power-law degree distribution together with den-

sification and shrinking diameters over time. A more recently proposed, micro-

scopic evolution model [76] is based on properties observed in large, temporal

network data, providing insight into the node and edge arrival processes. An-

other recent model, the butterfly model [102], concentrates on capturing the evo-

lution of connected components in a graph. In Chapter 4, we extend the micro-

scopic evolution model by including processes of forming and joining groups of

interest.

There are studies that describe the relationship between friendship links

and group formation properties [8, 108]. They show that the probability of a user

joining a group increases with the number of friends already in the group [8],

and that higher degree nodes tend to belong to a higher number of groups [108].

Group detection is a related problem (for a survey, see [46]). Its goal is to find

new communities based on node features and structural attributes. Unlike group

detection work, our work concentrates on unraveling the process according to
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which existing groups were formed. Another closely related work to ours is the

work by Lattanzi and Sivakumar [75]. They develop a model for the evolution of

affiliation networks according to which a social network results from a folding of

an affiliation network, i.e., a pairwise social tie between two nodes exists if and

only if they share a common affiliation. The resulting networks meet a number

of desired properties, such as power-law degree distributions, edge densification

and shrinking diameter. In contrast, our work concentrates on an affiliation net-

work which is formed around user-defined online groups in which, as we show

in Section 4.1.4, social ties between users affiliated with the same group are rare.

Prior to developing our co-evolution model [158], there was no model that

captured the evolution of social and affiliation networks in online communities.

In Chapter 4, we present this generative model which captures a number of global

statistical properties in these types of networks. Some of the properties have been

known in the research literature [8, 10, 77, 76, 108], and we also discover and

discuss other novel properties.

Besides capturing the global network properties, understanding the dy-

namic nature of networks involves studying local node properties for predict-

ing which pairs of users are likely to form social links. In Chapter 5, we look at

this problem which is known as link prediction. Lü and Zhou [91], as well as Al

Hasan and Zaki [53], have written recent surveys on the topic of link prediction.

Lü and Zhou distinguish between similarity-based algorithms, maximum likeli-

hood methods and probabilistic model approaches. Similarly, Al Hasan and Zaki

categorize approaches into feature-based link prediction, Bayesian probabilistic

74



models, probabilistic relational models and linear algebraic methods.

In general, link-prediction algorithms process a set of features in order to

learn and predict whether it is likely that two nodes in the data are linked. Some-

times, these features are hand-constructed by analyzing the problem domain, the

attributes of the actors, and the relational structure around those actors [2, 52, 80,

127]. Other times, they are automatically generated, i.e., the prediction algorithm

first learns the best features to use and then predicts new links [125]. Next, we

discuss the existing work that is most relevant to the link-prediction problem in

multi-relational social networks.

Closest to our work are link prediction techniques which rely on intelligent

feature construction [2, 52, 62, 80, 127]. The constructed features not only include

the attributes of the actors, but also the characteristics of the structure. Most of

this work examines co-authorship and citation networks [52, 80, 125, 127]. Some

of the approaches use machine learning techniques for classification [52, 74, 125,

138], and others rely on ranking the feature values [2, 80, 127].

Link prediction methods can use a similarity function. For example, Adamic

and Adar [2] use this type of method to predict friendships amongst students.

They gather data from university student websites and mailing lists, and con-

struct a vector of descriptive features for each student such as website text, in-

links, out-links, and mailing lists the students belong to. Their approach uses

descriptive features.

It has been shown that there is ”useful information contained in the network

topology alone” [80]. Liben-Nowell and Kleinberg use a variety of structural fea-
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tures such as shortest path, (a variant of) number of friends, number of common

friends, jaccard coefficient, and more elaborate structural features based on all

paths between two nodes in co-authorship networks. Their experiments compare

the link-prediction accuracy of each feature in isolation. They rank the node-pairs

by each feature value and pick the top pairs as their predicted links. Their results

suggest that simple features such as number of common friends coefficient perform

well compared to others.

Rattigan and Jensen [127] recognize that the extremely large class skew as-

sociated with the link-prediction task makes it very challenging. They look at a

related problem, anomalous link discovery, in which instead of discovering new

links, they are interested in learning properties of the existing links. They use

structural features in co-authorship networks and rank the most and least likely

collaborations based on an expensive structural feature, the Katz score. Another

work that uses link prediction for anomaly discovery is the work of Huang and

Zeng [62], in which they rank anomalous emails in the Enron dataset.

The work described so far uses descriptive and structural attributes in iso-

lation. Hasan et al. [52] use both. Their work studies classification for link pre-

diction based on hand-constructed features in co-authorship networks. They re-

port prediction accuracy (F score), precision, and recall results from a range of

classifiers such as decision trees, k-nearest neighbor, multilayer perceptron, and

support-vector machines. we study link prediction in richer social network set-

tings and we explore the use of group features and alternate representations.

The link-prediction problem has also been studied in the domain of citation
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networks for scientific publications [125]. The authors posed the link-prediction

problem as a binary classification problem, and used logistic regression to solve

it. Their features are database queries such as most cited author, and thus they

are similar to both the descriptive and structural features we have discussed so

far. Their work describes a statistical learning approach for feature generation.

In particular, it extends the traditional Inductive Logic Programming (ILP) to rea-

son about probabilities, and uses this extension to learn new features from the

problem domain both statistically and inductively. The experiments in this work

suggest that the ratio of existing to non-existing links in the test data mattered,

and the fewer non-existing link examples were included, the better the precision-

recall curve was. However, testing with more non-existing link examples would

give a better estimate of the probability of a randomly picked pair of nodes in

the network to be classified correctly. Another statistical learning approach to

link prediction was presented by Taskar et al. [138]. The authors use relational

Markov networks to define a probabilistic model over the entire link graph. Their

features are both descriptive and relational. They apply their method to two do-

mains: linked university websites and a student online social network.

Another automated feature-generation method has been presented by Ku-

bica et al. [74] who described a learning method for the task of friend identifica-

tion which is similar to anomalous link discovery. Their method, called cGraph,

learns an approximate graph model of the actual underlying link data given noisy

linked data. Then, this graph model is used to predict pairwise friendship infor-

mation regarding the nodes in the network. The types of features that they use
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are descriptive, structural and group.

Link completion is a problem related to link prediction. Given the arity of

a relationship and all but one entity participating in it, the goal is to predict the

missing entity, as opposed to classifying the missing link itself. Goldenberg et

al. [49] present a comparison of several classification algorithms such as Naive

Bayes, Bayesian networks, cGraph (mentioned above), logistic regression, and

nearest neighbor. This study used several real-world datasets from different do-

mains, including co-authorship networks, and data collected from the Internet

Movie Database site. It suggested that logistic regression performs well in gen-

eral in the datasets above; in our study on real-world social networks, logistic

regression usually performed worse than decision-tree classifier in terms of accu-

racy.

There has also been interest in learning group features in social networks.

Kubica et al. [73] describe a group-detection algorithm that uses descriptive fea-

tures and links. First, they perform clustering based on the descriptive features

(clustering) and find the groups. They allow group overlap and assume that

group memberships are conditionally independent of each other given descrip-

tive features. Then, their algorithm assigns a probability of a link between two

actors based on the similarity of their groups, and it can answer ranking queries

similar to the ones in the anomalous link discovery work. One of the issues with

the proposed algorithm is that it is slow [74].

The work of Friedland and Jensen [45] studies the problem of identifying

groups of actors in a social network that exhibit a common behavior over time.
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The authors focused on networks of employees in large organizations, and inves-

tigated the employee histories to identify the employees who worked together

intentionally from those who simply shared frequently occurring employment

patterns in the industry.

In Chapter 5, we study link prediction in social and affiliation network set-

tings where there are closely-knit groups. We explore the use of descriptive,

structural and group features, as well as alternate network representations, and

present a taxonomy for link prediction. Our results suggest that there is a signifi-

cant increase in link prediction accuracy when the affiliation network is overlaid

with the social network.
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Chapter 4

Co-evolution Model

Many of the existing online social networks have millions of users, and al-

low complex interactions through linking to friends, public messaging, photo

commenting, participating in groups of interest, and many others. Studies have

been performed to characterize and explain the behavior of users, and most of

them concentrate on modeling how users join the network and form links to each

other. Little is known about how different types of interaction influence each

other. In this chapter, I address the problem of modeling social network genera-

tion explaining both link and group formation.

In social networks, users are linked to each other by a binary relationship

such as friendship, co-working relation, business contact, etc. Each social net-

work often co-exists with a two-mode affiliation network, in which users are

linked to groups of interest, and groups are linked to their members. In our

study we use three large datasets from online social and affiliation networks, and

discover a number of interesting properties. The datasets were from Flickr, Live-
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Journal and YouTube, collected by Mislove et al. [108].

Using the newly observed and previously studied statistical properties of

these networks, we propose a generative model for social and affiliation net-

works. The model explains the complex process of forming the networks, and

captures a number of affiliation network properties which have not been cap-

tured by a model before: power-law group size distribution, large number of

singletons (group members without friends in the group), power-law relation

between the node degree and the average number of group affiliations, and ex-

ponential distribution of the number of group affiliations for nodes of a particular

degree. Our findings are important for understanding the evolution of real-world

networks and suggest that the process is more complex than a naı̈ve model in

which groups are added to a fully evolved social network. They also show that

users join groups for different reasons and having friends in the group is often

not necessary. This suggests that information spreads in the network through

channels other than the friendship links, and this observation has implications

on information diffusion and group recommendation models.

In addition, this model can be used for synthetic network generation. This

is an important application because real-world network datasets are often propri-

etary and hard to obtain. Controlling network parameters allows the generation

of datasets with different properties which can be used for thorough exploration

and evaluation of network analysis algorithms.

Our contributions include the following:
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• We discover a number of new properties in social and affiliation networks.

• We propose the first generative model for network evolution which captures

the properties of both real-world social and affiliation networks.

• We provide a thorough evaluation of our model which shows its flexibility for

synthetic data generation.

Because we study the evolution of graphs over time, we introduce the nota-

tion ev(vi, vj, t) to denote the social link that vi and vj form at time t and eh(vi, hj, t)

to denote the affiliation link between user vi and group hj formed at time t, when

this user becomes a member of the group. There are a number of reasons why

groups are formed. For example, groups can exist because of a common interest,

such as philately or book-reading clubs; they can be based on common business

relation, such as an employing company, or they can be based on common per-

sonal traits, such as geographic location. What is common between the groups

that we study is that users have voluntarily chosen to be parts of them, as op-

posed to clustered together by a group detection algorithm.

4.1 Observations

Though affiliation groups constitute a major part of many social networks,

very little work in the literature focuses on analyzing group memberships and

evolution. In this section, we analyze different affiliation networks and try to

characterize some properties of affiliation groups that are consistent across var-

ious datasets. For our analysis, we used three large real-world datasets from
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LiveJournal, Flickr and YouTube.

LiveJournal is a popular blogging website whose users form a social net-

work through friendship links. Users also form affiliation links to various ‘com-

munitites,’ which are groups of users with similar interests. We used a Live-

Journal dataset with over 5.2 million users, 72 million links, and over 7.4 million

affiliation groups. The second dataset is from Flickr, a photo-sharing website

based on a social network with friendships and family links. Groups in Flickr are

also formed on the basis of common interest. The Flickr dataset contains over 1.8

million users, 22 million links, and around 100, 000 groups. The third dataset is

from YouTube, a popular video-sharing website with an underlying social net-

work based on users’ contacts. Users also form an affiliation network by joining

social groups where they can post and discuss videos. The YouTube dataset con-

tains over 1.1 million users, 4.9 million links and around 30, 000 groups. The full

dataset descriptions can be found in the work of Mislove et al. [108]. Now, we

describe the observations that we discovered by analyzing the datasets, and we

relate them to previously observed properties.

4.1.1 Group size distribution

We begin by characterizing the relationship between the size of the affilia-

tion group and its frequency of occurrence. The main observation is that, analo-

gous to the degree distribution, the group size distribution follows a power law,

with a large number of small groups and a smaller number of large ones. This has
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(a) LiveJounral

(b) Flickr

(c) Youtube

Figure 4.1: Distribution of the number of groups of a particular size on log-log
scale.

also been observed by Mislove et al. [108]. The results are illustrated in Figure 4.1.

4.1.2 Node degree vs. average number of group affiliations

Looking at the relationship between the degree of a node and the number

of its group affiliations, we observe that the nodes of lower degree tend to be

members of fewer number of groups than the nodes with higher degree. How-

ever, the relation starts declining after a certain point, yielding lower number of
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group memberships for very high degree nodes. The relationship is illustrated in

Figure 4.2, where the x-axis represents the node degree and the y-axis represents

the average number of group affiliations for nodes with that degree. The nodes in

the declining part represent a very small portion of the overall number of nodes

(< 1% of the size of the network in all cases), which is why we fitted only the

increasing part of the data points to a function. We compared against over 55

different distributions including logistic, Dagum and Laplace, using EasyFit 1, a

software for distribution fitting. A power-law relation was the best fit according

to the Kolmogorov-Smirnov ranking coefficient.

4.1.3 Distribution of the number of group affiliations

The previous observation was about the average number of group affilia-

tions for nodes with different degrees. Here, we look at the actual distribution

of the number of group affiliations with respect to the node degree. It turns out

that the number of group affiliations for nodes of a certain degree k follows an

exponential distribution. Figure 4.3 reports on k = 50 for LiveJournal and Flickr,

and on k = 25 for YouTube but this was true for other degrees as well.

4.1.4 Properties of group members

According to Backstrom et al. [8], nodes are more likely to join groups in

which they have more friends. However, it turns out that, in our datasets, there

is a large portion of group members without friends in the group (singletons),
1At http://www.mathwave.com
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(a) LiveJounral

(b) Flickr

(c) Youtube

Figure 4.2: Node degree vs. average number of group affiliations
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(a) LiveJounral - Degree = 50

(b) Flickr - Degree = 50

(c) Youtube - Degree = 25

Figure 4.3: Distribution of the number of group affiliations for nodes with specific
node degrees.
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meaning that they did not join the group because of a friend. This is surprising

because it shows that users join groups for various reasons, friendship being only

one of them.

We measure the maximum node degree within groups of various sizes in

our datasets. For all groups of a given size, we measure the average maximum

degree per group and the average number of singletons (nodes with no friends

within this group) as a percent of the group size. The results show a large number

of singletons overall, especially in small groups, indicating that a large percentage

of the members of a specific group do not have any friends within this group. This

conclusion was confirmed by analyzing the average maximum degree per group.

It turned out that the friends of the maximum-degree node within a group do not

constitute a large percentage of the group size, even in small groups.

The numbers are illustrated in Figure 4.4, where the upper series shows the

average ratio of the number of singletons to the group size, and the lower series

represents the average ratio of the maximum degree to the group size. This result

shows that the larger the group a user belongs to, the more likely it is for him/her

to have a friend in the group. For example, in Flickr, 76% of the members of

groups of size 50 are singletons, while for groups of size 500, this number drops

to 29%.
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(a) LiveJounral

(b) Flickr

(c) Youtube

Figure 4.4: Ratio of the average number of singletons to the group size (upper
series) and ratio of the maximum degree to the group size (lower series).
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4.2 Co-evolution properties and model

A model which describes the evolution of a social network together with the

evolution of an affiliation network needs to capture a number of simple events, as

well as statistical properties of both networks. Here, we present the events of our

co-evolution model and desired properties, some of which have been presented

in other work. Then, we present our co-evolution model, which extends the node

arrival and link formation processes of the microscopic evolution model [76] to

dynamic social and affiliation networks.

4.2.1 Events

The possible events that our model allows are:

• a node joins the network and links to someone

• a new group is formed with one member

• a node joins an existing group

• a new link is formed between existing users

4.2.2 Desired properties

A co-evolution model needs to capture properties of both social and affilia-

tion networks. Here, we show three types of properties: properties of the social

network alone, properties of the affiliation network alone, and properties of both.

Properties of the social network. The properties are:
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• power law degree distribution - the node degrees are distributed according to a

power law with a heavy tail. This property has been observed in many other

studies.

• network densification - the density of the network increases with time [77].

• shrinking diameter - the effective diameter of the network decreases as more

nodes join the network [77].

Properties of the affiliation network. The model also needs to capture the

following affiliation network property:

• power law group size distribution - the group sizes are distributed according to

a power law with a heavy tail.

Properties involving both the social and affiliation networks. These prop-

erties describe the relationship between a social network and an affiliation net-

work:

• large number of singletons - many nodes do not have any friends inside the

groups they are affiliated with.

• power-law relation between the node degree and the average number of group affilia-

tions - see Section 4.1.2.

• exponential distribution of the number of group affiliations for a particular node de-

gree - see Section 4.1.3.

91



4.2.3 Co-evolution model

We now propose a co-evolution model which captures the discussed de-

sired properties. Our model is undirected, and it has two different sets of param-

eters: one is concerned with the evolution of the social network, and the other

determines the factors of development of the affiliation network. We also present

a naı̈ve model which assumes that the evolution of the affiliation network is in-

dependent of the evolution of the social network. Both models utilize the mi-

croscopic evolution model [76] for generating the social network because that

model is based on observing the temporal properties of large social networks.

We present its main components first.

Microscopic evolution model. The main ideas behind the microscopic evo-

lution model are that nodes join the social network following a node arrival func-

tion, and each node has a lifetime a, during which it wakes up multiple times

and forms links to other nodes. These are the set of parameters needed for the

microscopic evolution model: N(.) is the node arrival function, λ is the parame-

ter of the exponential distribution of the lifetime, and α, β are the parameters of

the power law with exponential cut-off distribution for the node sleep time gap.

Further details of the model can be found in the paper by Leskovec et al. [76]. We

utilize these parts:

Node arrival. New nodes Vt,new arrive at time t according to a pre-defined

arrival process N(.).

Lifetime sampling. At arrival time t, v samples lifetime a from λ.e−λ.a: v be-
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comes inactive after time tend(v) = t+ a.

First social linking. v picks a friendwwith probability proportional to degree(w)

and forms edge ev(v, w, t).

Sleep time sampling. v decides on a discrete sleep time δ by sampling from

1
Z
.(δ−α).e−β.degree(v).δ. If the node is scheduled to wake up before the end of its

lifetime (t + δ ≤ tend(v)), then it is added to the set of nodes Vt+δ that will wake

up at time t+ δ.

Social linking. At wake up time t, v creates an edge ev(v, w, t) by closing a

triad two random steps away (i.e., befriends a friend w of a friend).

Naı̈ve model. Before we present our model, we present a naı̈ve model

which assumes that the evolutions of the social network and the affiliation net-

work are two independent processes. As a first step, it creates the social network

using the model of Leskovec et al. [76]. Then, it generates and populates groups

in such a way that their sizes follow a power-law distribution with an exponent k.

Algorithm 4 presents the naı̈ve model in detail. We use this model as a baseline.

Co-evolution model. In this model, the affiliation network evolution co-

occurs and depends on the social network evolution. When a node wakes up,

besides linking to another node, it also decides on a number of groups to join.

With probability τ , it creates a new group, else, it joins an existing group. There

are two mechanisms by which it picks a group to join. In the first one, it joins

the group of one of its friends. In the second one, it picks a group at random.

Algorithm 5 presents the co-evolution model in detail.

Here, we present the parameters of the affiliation network evolution part in
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Algorithm 4 Naı̈ve model
1: Set of nodes V = ∅
2: for each time period t ∈ T do
3: Set of active nodes at time t, Vt = ∅
4: end for
5: for each time period t ∈ T do
6: Node arrival. V = V ∪ Vt,new
7: for each new node v ∈ Vt,new do
8: Lifetime sampling
9: First social linking

10: end for
11: for each node v ∈ Vt do
12: Social linking
13: end for
14: for each node v ∈ Vt ∪ Vt,new do
15: Sleep time sampling
16: end for
17: end for
18: Set of groups H = ∅.
19: for i=1:number of groups do
20: Group creation. New group hi is created and its size s is sampled from s−k.

H = H ∪ {hi}.
21: for j=1:s do
22: Group joining. Pick a random node v ∈ V and form an affiliation link to

it eh(v, hi, null).
23: end for
24: end for
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Algorithm 5 Co-evolution model
1: Set of nodes V = ∅
2: Set of groups H = ∅
3: for each time period t ∈ T do
4: Set of active nodes at time t, Vt = ∅
5: end for
6: for each time period t ∈ T do
7: Node arrival. V = V ∪ Vt,new
8: for each new node v ∈ Vt,new do
9: Lifetime sampling

10: First social linking
11: end for
12: for each node v ∈ Vt do
13: Social linking
14: Affiliate linking. v determines nh, the number of groups to join, sam-

pled from an exponential distribution λ′e−λ
′nh with a mean µ′ = 1

λ′
=

ρ.degree(v)γ .
15: for i = 1 : nh do
16: if rand() < τ then
17: Group creation. v creates group h, and forms edge eh(v, h, t). H =

H ∪ {hi}.
18: else
19: Group joining. v forms edge eh(v, h, t). Group h is picked through

a friend with probability pv; otherwise, or if no friends’ groups are
available, it joins a random group with prob. proportional to the size
of h.

20: end if
21: end for
22: end for
23: for each node v ∈ Vt ∪ Vt,new do
24: Sleep time sampling
25: end for
26: end for
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more detail. The first parameter, ρ, represents a tuning parameter that controls

the density of the affiliation links in the network. The second parameter, γ, is

the exponent of the power law that relates node degree with number of group

affiliations. The last parameter to our model, τ , represents the probability by

which an actor creates a new group at each time point. All our parameter values

range over the interval [0, 1] except ρ which ranges between 0 and the average

number of group affiliations per node. We provide some guidelines for picking

the right parameter values in the experiments section.

As noted in Section 4.2.2, the relationship between node degree and average

number of affiliations is a power-law relation. Even though one can vary the

exponent γ of this function, for simplicity, we fixed its value to 0.5, utilizing a

square root function to compute this average.

It is also worth noting that other, more sophisticated techniques can be uti-

lized in both social and affiliation aspects of the model that might be able to cap-

ture stronger correlation between the evoultion of both kinds of networks. One

possible modification for the social link creation is considering random steps but

with group bias, such that the probability of choosing a node u to close the triad

is proportional to the number of groups the two nodes share. Another possible

modification is to specify the number of groups a node will join in advance us-

ing the estimated power-law function. A disadvantage of such approach is that

the approximated degree is hard to compute because it depends on the expected

value of a function which changes with the degree. A thorough investigation of

the different alternatives is left as future work.
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In the group joining step of the algorithm, a node decides to join a group

and it has two choices for picking that group. One is through a friend, and the

second one is by picking a random group with probability proportional to the size

of that group. It follows the first choice with some probability pv, else it resorts

to the second one. The intuition behind this is that some nodes in each group

are singletons while others have friends in it. The second choice is also based

on the observation that the size of the groups follows a power-law distribution;

on the principle of ”rich get richer,” groups with larger size should have a larger

probability of getting picked.

There are many options for computing the probability pv such as making

it a constant or dependent on the node degree. One can test which one is most

appropriate in the presence of temporal data for affiliation networks. Since such

data is hard to obtain, we try different possibilities in our model. It turns out

that using a constant for pv yields a relationship between the group size and the

singleton ratio that decreases at first but then stabilizes around 1 − pv at higher

group sizes. In contrast, what we had observed initially was a relationship which

decreases with increasing group sizes (see Figure 4.4). When we use a pv which

is correlated with the degree, then we observe a relationship closer to the desired

one. In particular, we compute:

pv =


η ∗ degree(v) if η ∗ degree(v) < 1

1

(4.1)
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though other functions of the degree may be more appropriate. The parameter η

represents the friends’ influence on the actor’s decision to join a group; i.e. the

likelihood of an actor joining one of the groups of his/her friends increases by

increasing the value of η. The main intuition behind using a degree-correlated

probability is the fact that as a node has more friends, the probability that one of

its friends belongs to one of the larger size groups increases. Thus, utilizing the

friendship bias parameter η actually increases its chances of joining this larger

size group of its friend, thus leading to the decreasing relationship noted in the

observations.

4.3 Experiments

We present three sets of experiments. The first set observes the properties

of data, generated by our co-evolution model, and the second set shows that the

model is able to produce a dataset, very similar to one of the real-world datasets.

We also present results for the naı̈ve model which adds groups on top of a social

network, showing that this model is not able to produce the real-world affiliation

network properties.

4.3.1 Synthetic data

In our first set of experiments, we vary the parameters of the model in order

to generate a few synthetic datasets. Then, we check whether each dataset has the

properties described in Section 4.2.2.
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Figure 4.5: Degree distribution in a synthetic network

We have fixed the parameters of the social evolution part throughout this set

of experiments, and varied the parameters of the affiliation part of the network.

We assume an exponential node arrival function, to achieve higher growth rate

in our generated network, which is in accordance with what Leskovec et al. [76]

showed in some social networks, such as Flickr. However, other arrival functions

can also be utilized within our model. The other parameters of the social evolu-

tion aspect were fixed as reported by Leskovec et al. for Flickr data: λ = 0.0092,

α = 0.84, and β = 0.002. We also fix the value of the second parameter to the

affiliation model, γ, to 0.5.

We first illustrate the results for the social network generated using the spec-

ified parameters. The model was run for 400 time steps, resulting in a network

with 140,158 actors and 245,043 social links. The degree distribution in the result-

ing network follows a power-law, as Figure 4.5 shows. The network densification

property also holds, as illustrated in Figure 4.6 which represents the number of

nodes and number of edges at each time point on a log-log scale.

In order to test the affiliation aspect of our evolution model, we investigated

the effect of each parameter in the model on the properties of the resulting affil-
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Figure 4.6: Densification in a synthetic network

Table 4.1: Number of affiliation links with varying ρ

ρ Affiliation Count
3 285,536

10 2,411,710
20 4,771,072

iation network. We start with our first parameter ρ, which represents a tuning

factor of the affiliation links’ density. The main properties that are affected by

varying the value of ρ are the total number of affiliations and the distribution be-

tween the node degree and average number of group affiliations. As illustrated in

Figure 4.7, we can note that the general power distribution persists among differ-

ent values of ρ, but the main effect is the scale of the distribution; as increasing the

value of ρ, more affiliation links are created, and correspondingly increasing the

average number of group affiliations per node. Theoretically, the values for this

parameter can vary from 0, where no affiliation links are created in the network,

to the maximum number of groups, where fully connected affiliation network

emerges. Practical values for ρ varies between 0 and 25. The total number of

affiliation links for each value of ρ is reported in Table 4.1.

Our next parameter, τ , represents the probability with which a node creates
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(a) ρ = 3 (b) ρ = 10

(c) ρ = 20

Figure 4.7: Degree vs. average number of group affiliations with varying ρ.
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(a) τ = 0.1 (b) τ = 0.5

(c) τ = 0.9

Figure 4.8: Group size distribution with varying τ

a new group. This parameter directly affects the number of groups in the result-

ing network, as well as the group size distribution. As illustrated in Figure 4.8,

we note that although the power law distribution of the group sizes holds for

various values of τ (which is one of the desired properties), the maximum group

size decreases significantly with increasing the value of τ . This decline in the

maximum group size is caused by the fact that for higher values of τ , nodes tend

to create new groups more often than joining existing ones, which leads to the

existence of a large number of groups with relatively small sizes. This conclu-

sion is also clear in the results illustrated in Table 4.2, where the resulting number

of groups in the network and the maximum group size vary significantly with

changing the parameter value.
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Table 4.2: Number of groups with varying τ

τ Groups Count Max Group Size

0.1 66,887 39,753
0.5 245,143 560
0.9 332,437 32

Table 4.3: Statistics of a real network (Flickr) vs. a synthetic one with ρ = 2.5,
γ = 0.5, η = 0.1, τ = 0.03.

Real network Synthetic network

No. of users 1,846,198 1,707,475
No. of groups 103,648 88,749

No. of affiliations 8,529,435 7,813,910
Avg. no. of affiliations per user 4.62 4.58

Ratio of groups to users 0.0561 0.052

Finally, we investigate the parameter on which pv depends, η. η represents

the extent to which friends influence the decision of a node to join groups. The

outcome of increasing the value of this parameter is a decreasing number of sin-

gletons and an increasing relative degree of the nodes within different groups. As

illustrated in Figure 4.9, we can easily note that the general distribution captures

the desired properties and the observations in real data. The value of η is highly

dependent on the social network structure properties, such as the average node

degree in the social network and the desired influence of friends on node’s deci-

sion. For instance, if we have a value of η = 0.1 in a setting where the expected

value for the average node degree is around 10, then we expect to see high per-

centage of nodes in the network being affected by their friends.
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(a) η = 0.01 (b) η = 0.05

(c) η = 0.09

Figure 4.9: Group size vs. member attributes with varying η (dashed line: % ratio
of singletons to group size, solid line: % ratio of maximum degree to group size).

4.3.2 Real data

In this set of experiments, we look for the model parameters that will pro-

duce a network similar to one of the real-world datasets we have used in the

observations of Section 4.1. We searched for parameters that will produce an af-

filiation network resembling the actual one of Flickr since the social network evo-

lution parameters for Flickr have already been reported by Leskovec et al. [76].

In order to get an initial seed of the search space for the evolution parameters of

the affiliation network, we analyze the affiliation network properties of Flickr as

observed in Section 4.1. A summary of the affiliation network statistics of Flickr

is given in Table 4.3.
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The Flickr dataset is characterized by a relatively small number of groups

in comparison to the number of users, where the actual ratio between the group

count and the user count is 0.056. As a result, we expect to have a small value of τ

close to this ratio. On the other hand, the average number of group affiliations per

user in the real dataset is 4.62, and we assign this value to ρ. Finally, as observed

in Figure 4.4, the average percentage of singletons in each group is lower than the

average for the other datasets, indicating more friendship bias, thus increasing

the value of η.

There are other factors to consider when specifying the affiliation network

evolution parameters, such as the rate of node arrival and the probabilistic nature

of the node’s lifetime and sleep time gaps. For example, in Flickr’s case, the

exponential node arrival rate means that more nodes are created at later times.

In this case, the distribution parameters should be a bit lower than the desired

ones because many nodes will join towards the end of the evolution process but

they will not have time to create many links and affiliations. By utilizing all these

pieces of information to guide the parameter search, we were able to generate

a network that has similar attributes to Flickr’s, illustrated in table Figure 4.3.

We argue that using a similar procedure for parameter selection can result in

generating synthetic networks that have many of the properties of a real one.
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4.3.3 Comparison with the naı̈ve model

In this set of experiments, we were interested to learn whether we can pro-

duce the desired network properties by utilizing the naı̈ve evolution model. The

model can clearly capture the social network properties since the process of creat-

ing it is the same as in our co-evolution model. In terms of the affiliation network

properties, we used the naı̈ve model to produce a social network similar to Flickr,

as described in the previous experiment. Then we created the desired number of

groups and picked the size of each one from a power-law distribution with the

parameters observed in Flickr. Each group was populated by picking random

users from the social network. As a result, the naı̈ve model is able to capture

the group size distribution. However, Figure 4.10(a) shows that it is not able to

capture the average number of singletons and the average maximum degree as

a percent of the group size. By picking random members, almost all members in

each group end up being singletons (except for groups with very large sizes), and

the average maximum degree is close to 0. Figure 4.10(b) shows that the model

is also not able to capture the relation between degree and average number of

group affiliations for nodes with lower degrees. The naı̈ve model generates a

relation between them which is closer to linear than a power law.

4.4 Conclusions

We presented a generative model for creating social and affiliation networks.

The model captures important statistical properties of these networks, and pro-
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(a) Average number of singletons (dashed
line) and average maximum degree (solid
line)

(b) Degree vs. avg number of affiliation
groups

Figure 4.10: The affiliation properties produced by the naı̈ve model

vides new insights into the evolution of networks with both social and affiliation

links. It shows that groups can be formed for various reasons and friendship

links are not the only propagators of influence. We believe that this observation

not only affects the design of network evolution models but it may have broader

implications on other mechanism designs, such as group recommendation, infor-

mation diffusion and viral marketing strategies.
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Chapter 5

Link Prediction

Besides studying network evolution at a macro level, we are interested in

understanding network dynamics at a micro level. In this chapter, we inves-

tigate the power of combining friendship and affiliation networks for the task

of predicting new social links using local node properties. We use the notion

of structural equivalence, when two actors are similar based on participating in

equivalent relationships, which is fundamental to finding groups in social net-

works. Our approach is an attempt to bridge approaches based on structural

equivalence and community detection, where densely connected groups of ac-

tors are clustered together into communities. We show how predictive models,

based on descriptive, structural, and group features, perform surprisingly well

on challenging link-prediction tasks.

We validate our results on a trio of social media websites describing friend-

ships and family relationships. We show that our models are able to predict links

accurately, in this case friendship relationships, in held-out test data. This is typ-
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ically a very challenging prediction problem. With our results, we also hope to

motivate further research in discovering closely-knit groups in social networks

and using them to improve link-prediction performance.

Our link-prediction approach can be applied in a variety of domains. The

important properties of the data that we use are that there are actors, links be-

tween them and closely-knit groups such as families, housemates or officemates.

In some data, groups are given; in other datasets, it may be necessary to first

cluster the nodes in a meaningful manner. For example, in email communication

networks, such as Enron [62, 67], groups could be cliques of people that email

each other frequently. In the widely studied co-authorship networks [11, 52, 80,

117, 118, 125, 127], affiliation groups may be cliques of authors that collaborate

on many papers together. In these domains, the link-prediction task translates

to finding people who are likely to communicate with each other [62] or authors

who are likely to collaborate in the future [80, 125].

Our contributions include the following:

• We propose a general framework for combining social and affiliation net-

works.

• We show how to instantiate it for overlaying friendship and family net-

works.

• We show how features of the overlaid networks can be used to accurately

predict friendship relationships.

• We validate our results on three social media websites.
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Figure 5.1: Actors in the same tightly-knit group often exhibit structural equiva-
lence, i.e., they have the same connections to all other nodes. Using the original
network (a), and a structural equivalence assumption, one can construct a net-
work with new predicted links (b).

In Section 5.1, we describe the link prediction problem that we focus on in

this chapter. Section 5.2 addresses the taxonomy of the descriptive, structural,

and group features that we used for link prediction in our overlaid networks. We

then propose a comparison of our network overlay method with two alternatives

in Section 5.3. We describe experimental results in Section 5.4, the generality of

our approach in Section 7.5, and discuss conclusions and future work in Section 9.

5.1 Link prediction problem

In this thesis chapter we study the problem of predicting friendship links in

multi-relational social networks. This problem is closely related to problems of

link prediction [52, 62, 80, 125], link completion [49], and anomalous link discov-

ery [62, 127] which we covered in more depth in the beginning of Part II.
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Link prediction in social networks is useful for a variety of tasks. The most

straightforward use is for making data entry easier – a link-prediction system can

propose links, and users can select the friendship links that they would like to in-

clude, rather than users having to enter the friendship links manually. Link pre-

diction is also a core component of any system for dynamic network modeling—

the dynamic model can predict which actors are likely to gain popularity, and

which are likely to become central according to various social network metrics.

Link prediction is challenging for a number of reasons. When it is posed as

a pair-wise classification problem, one of the fundamental challenges is dealing

with the large outcome space; if there are n actors, there are n2 possible relations.

In addition, because most social networks are sparsely connected, the prior prob-

ability of any link is extremely small, thus we have to contend with a large class

skew problem. Furthermore, because the number of links is potentially so large,

the number of the negative instances will be huge, so constructing a representa-

tive training set is challenging.

In our approach to link prediction in multi-relational social networks, we

explore the use of both attribute and structural features, and, in particular, we

study how affiliations with closely-knit groups (in our case, family groups) can

significantly aid in accurate link (here, friendship) prediction.
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5.2 A feature taxonomy for multimodal networks

We identified three classes of features that describe characteristics of poten-

tial links in a multimodal network:

• Descriptive attributes are attributes inherent to the nodes, and they do not

consider the structure of the network.

• Structural attributes include characteristics of the networks based on the

friendship relationships such as node degree.

• Group attributes are based on structural properties of the network when both

types of relationships, friendship and family, are considered. The groups in

this case are the cliques of family members.

Each feature within a class can be assigned to an actor or to a pair of actors (cor-

responding to a potential edge). The following sections describe our taxonomy

of the features in more detail. For simplicity, we introduce the notation vi.F to

denote the set of friends of actor vi, and vi.M to denote the set of family members

of the same actor.

5.2.1 Descriptive attributes

The descriptive attributes are attributes of nodes in the social network that

do not consider the link structure of the network. These features vary across

domains. They provide semantic insight into the inherent properties of each node
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in a social network, or compare the values of the same inherent attributes for a

pair of nodes.

We define two classes of descriptive attributes for multi-relational social

networks:

1. Actor features. These are inherent characteristics of an actor, v.A.

2. Actor-pair features. The actor-pair features compare the values of the same

node attribute for a pair of nodes vi and vj .

5.2.2 Structural features

The next set of features that we introduce describe features of network struc-

ture. The first is a structural features for a single node, vi, while the remaining

describe structural attributes of pairs of nodes, vi and vj .

1. Actor features. These features describe the link structure around a node.

Number of friends. The degree, or number of friends, of an actor vi: |vi.F |.

2. Actor-pair features. These features describe how interconnected two nodes

are. They measure the sets of friends that two actors have vi.F and vj.F .

Number of common friends. The number of friends that the pair of nodes

have in common in the network: |vi.F ∩ vj.F |.

Jaccard coefficient of the friend sets. The Jaccard coefficient over the friend

sets of two actors describes the ratio of the number of their common
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friends to their total number of friends:

Jaccard(vi, vj) =
|vi.F∩vj .F |
|vi.F∪vj .F | .

The Jaccard coefficient is a standard metric for measuring the similarity

of two sets. Unlike the feature number of common friends, it considers

the size of the friendship circle of each actor.

Density of common friends. For the set of common friends, the density is

the number of friendship links between the common friends over the

number of all possible friendship links in the set. The density of com-

mon friends of two nodes describes the strength in the community of

common friends. Density is also known as clustering coefficient.

5.2.3 Group features

The third category of features that we consider are based on group member-

ship; in the networks we studied, the groups are families. These are the features

that overlay friendship and affiliation networks.

1. Actor features. These are features that describe the groups to which an actor

belongs.

Family Size. This is the simplest attribute and describes the size of an ac-

tor’s family: |vi.M |.

114



2. Actor-pair features. There are two types of features for modeling these inter-

family relations based on the overlapping friend and family sets of two ac-

tors vi.F and vj.M :

Number of friends in the family. The first feature describes the number of

friends vi has in the family of vj : |vi.F ∩ vj.M |. This feature allows

one to reason about the relationship between an actor and a group of

other actors, where the latter is semantically defined over the network

through the family relations.

Portion of friends in the family. The second feature on inter-family relations

describes the ratio between the number of friends that vi has in vj’s

family (the same as the above feature) and the size of vj’s family. The

rationale behind this feature is that the higher this ratio is, the more

likely it is that vj is close to vi in the network since more of its family

members are friends with vi.

The idea behind the group features is based on the notion of structural equiv-

alence of nodes within a group. Two nodes are structurally equivalent if they have

the same links to all other actors. If we can detect tightly-knit groups in a social

network and we assume that the nodes in each group are likely to behave simi-

larly, then new links can be predicted by projecting links such that the nodes in

the group become structurally equivalent. In our networks, such groups are the

family cliques. In a weighted graph, a tight group could map to a clique of nodes

with highly-weighted edges.
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Figure 5.1 shows an example of how a structural equivalence assumption

can help in predicting new links. For example, if one of the actors from Group A

is friends with an actor from Group B, as shown on the original network (a), then

it may be more likely that there is a link between the other actor from Group A

and the actor from Group B, shown as a dashed line in (b).

5.3 Alternative network representations

The traditional approach to studying networks is to treat all relationships as

equal. In the previous section, we described overlaying networks with different

link types in a way that distinguishes between these types, and uses information

about affiliation groups. In other words, our link-prediction approach uses in-

formation about the actors V , the family groups H , the friendship relationships

Ev, and the family relationships Em where Em = {(vi, vj)|∃eh(vi, hx),∃eh(vj, hx)}.

We call our representation different-link and affiliation overlay. Therefore, a logi-

cal question one may ask is what the benefits of treating links as different are,

and whether affiliation groups really make a difference in link prediction. Our

claim is that affiliations are important and that they can have a predictive value.

To illustrate the benefit of our approach as compared to the traditional one, we

compare it to two alternative representations of the network.

In the first alternative representation, which we call same-link and no affilia-

tion overlay, the family and friendship links are treated the same, and affiliation

groups are not given. More formally, in this representation, the graph consists
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of these components: actors V , and a set of edges to which we refer as implied

friendships Eimplied = Ev ∪ Em. We can compute the descriptive and structural

features in this alternative overlay, and use them for link prediction. In our ex-

periments, we investigate whether this alternative overlay can offer the same or

better link-prediction accuracy as the different-link and affiliation overlay.

Even if the first alternative overlay does not offer better accuracy, we still

need to check whether the predictive value of the different-link and affiliation

overlay comes from treating the links as different or from the fact that we are

given the affiliation groups. To investigate that, we look at a second alternative

overlay, the same-link and affiliation overlay, in which the family and friendship

links are treated the same, and affiliation groups are given. In this overlay, the

graph consists of these components: actors V , groups H , and implied friendships

Fimplied. We can compute all classes of features in this alternative overlay, and use

them for link prediction.

5.4 Experimental evaluation

5.4.1 Social media data sets

This research is based upon using networks that have two sets of connec-

tions: friendship links and family ties. We performed our experiments on three

novel datasets describing petworks: Dogster, Catster, and Hamsterster 1. On these

1At http://www.dogster.com, http://www.catster.com, and http://www.
hamsterster.com.
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Figure 5.2: Sample profile on Dogster which includes family and friends.

sites, profiles include photos, personal information, characteristics, as well as

membership in community groups. Members also maintain links to friends and

family members. As of February 2007, Dogster has approximately 375,000 mem-

bers. Catster is based on the same platform as Dogster and contains about 150,000

members. Hamsterster has a different platform, but it contains similar informa-

tion about its members. It is much smaller than Dogster and Catster - about 2,000

members.

These sites are the only three of the hundreds we visited that publicly share

both family and friendship connections2. However, these are networks where

both types of connections are realistic and representative of what we expect to

see in other social networks if they collected this data. The family connections

2For a full list, see http://trust.mindswap.org/SocialNetworks
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are representative of real life, since family links are only made between profiles

of pets created by the same owner. The friendship linking behavior is in line with

patterns seen in other social networks [48].

1. Actor features:

Breed. This is the pet breed such as golden retriever or chihuahua. A pet can

have more than one breed value.

Breed category. Each breed belongs to a broader category set. For example

in Dogster, the major breed categories we identified are working, herd-

ing, terrier, toy, sporting, non-sporting, hound, and other, a catchall for

the other breeds that appear in a the site, but not as frequently as the

previous ones. When a dog has multiple breeds, its breed category is

mixed.

Single Breed. This boolean feature describes whether a pet has a single

breed or whether it has multiple breed characteristics.

Purebred. This is a boolean feature which specifies whether a dog owner

considers its pet to be purebred or not.

2. Actor-pair features. All of the above features describe characteristics of a

single user in the network.

Same breed. This boolean feature is true if two profiles have at least one

common breed.
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5.4.2 Data description

We have obtained a random sample of 10, 000 profiles each from Dogster

and Catster, and all 2, 059 profiles registered with Hamsterster. Each instance in

the test data contained the features for a pair of profiles where some of the fea-

tures were individual node features. To construct the test data, we chose the pairs

of nodes for which there was an existing friendship link, and we sampled from

the space of node pairs which did not have a link. We computed the descriptive,

structural and group features for each of the profiles.

For each pair of profiles in the test data, we computed the features from the

three classes described in Section 5.2. A test instance for a pair of profiles vi and

vj includes both the individual actor features and the actor-pair features. It has

the form

< vi features, vj features, (vi, vj)-pair features, class >

where class is the binary class which denotes whether a friendship link exists

between the actors.

For Dogster, the sample of 10,000 dogs had around 17,000 links among

themselves, and we sample from the non-existing links at a 10:1 ratio (i.e., the

non-existing links are 10 times more than the existing links). For Catster, the

10,000 cats had 43,000 links, and for the whole Hamsterster dataset, the num-

ber of links was around 22,000. We sampled from the non-existing links in these

datasets at the same 10:1 ratio.

120



Table 5.1: Comparison of F1 values in the three datasets, with the feature types
from our taxonomy.

FEATURE TYPE DOGSTER CATSTER HAMSTERSTER

Descriptive 37.6% 0.4% 19.8%
Structural 76.1% 83.1% 59.9%
Group 90.8% 95.2% 89.2%
Descriptive and structural 78.6% 83.0% 60.3%
Descriptive, structural, and group 94.8% 97.9% 90.5%

5.4.3 Experimental setup

We used three well-known classifiers, namely Naı̈ve Bayes, logistic regres-

sion and decision trees for our experiments. The goal was to perform binary

classification on the test instances and predict friendship links. The implemen-

tations of these classifiers were from the latest version of Weka (v3.4.12) from

http://www.cs.waikato.ac.nz/ml/weka/. We allocated a maximum of

2GB of memory for each classifier we ran. We measured prediction accuracy

by computing precision, recall, and their harmonic mean, F1 score, using 10-fold

cross-validation.

5.4.4 Link-prediction results

We report only on the results from decision-tree classification because it con-

sistently had the highest accuracy among the three classifiers. Table 5.1 summa-

rizes our results. Adding group features to the descriptive and structural features

increased accuracy by 15% to 30%. We discuss the results in more detail in the

subsequent subsections.
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Descriptive attributes can be useful in combination with structural attributes

In these experiments, we have investigated the predictive power of the sim-

plest features, i.e., the descriptive attributes versus the impact of the structural

attributes. Figure 5.3 shows the accuracy results from the decision-tree classi-

fier. When we use only descriptive attributes, the link-prediction accuracy varies

across datasets. In Dogster, there is some advantage to using descriptive at-

tributes, yet the accuracy (F1 score) is relatively low (37.6%). In Catster and

Hamsterster, building the complete decision trees led to 0.4% and 19.8% accu-

racy, respectively (using Weka’s default pruning parameter, the trees were empty,

and the accuracies were 0%). This confirms that, in general, link prediction is a

challenging prediction task.

When we used the structural features (such as number of friends that two

profiles share), the link-prediction accuracy increased to 76.1% in in Dogster. This

suggests that the structural features are much more predictive than simple de-

scriptive attributes. This effect was even more pronounced for Catster and Ham-

sterster.

In Dogster, combining the node attributes and the structural features leads

to futher improvement. Using descriptive attributes together with structural at-

tributes leads to a better F1 score (78.6%) as compared to using either category

alone (37.6% and 76.1%, respectively) in Dogster, as shown in Figure 5.3. For

Catster and Hamsterster, the difference was less than 0.4%.
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Figure 5.3: a) Recall, precision, and F1 score for Dogster using descriptive and
structural attributes; b) F1 score across datasets. Using descriptive attributes to-
gether with structural attributes leads to a better F1 score in Dogster but not in
Catster and Hamsterster.

Figure 5.4: Link-prediction accuracy using all feature classes: descriptive, struc-
tural and group features. a) Recall, precision, and F1 score for Dogster; b) F1
score across datasets. Group features are highly predictive, yet adding the other
features provided benefit too.
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Family group features are highly predictive

As the previous experiments showed, structural attributes are stronger pre-

dictors than the descriptive attributes alone. Next, we investigate the predictive

power of the group features in our taxonomy. In Dogster, Catster and Hamster-

ster, the group features involve the families and friends of the users. Figure 5.4

shows our comparisons. Our results suggested that family groups are strong pre-

dictors for friendship links (F1 = 90.8% for Dogster). We also ran experiments

where we used not only family cliques, but also the structural and descriptive

features. In these experiments, the results show that the accuracy (F1) improves

by 4% in Dogster, 0.6% in Catster and 1.3% Hamsterster.

Computing more expensive structural attributes is not highly beneficial

Some structural features in our taxonomy were more computationally ex-

pensive to construct than others. For example, the feature that described the

number of friends is easy to compute, whereas the feature that described the den-

sity of common friends for each pair of profiles is the hardest. Using a database,

computing density of common friends for all pairs of profiles requires several

joins of large tables. In order to investigate the trade-off between computing ex-

pensive features and their predictive impact on our results, we have performed

the following experiments.

We have designed experiments in which we add more expensive structural

features one by one, and assess the link-prediction accuracy at each step. We
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Figure 5.5: Link-prediction accuracy using structural features of increasing com-
putational cost (number of friends, number of common friends, jaccard coeffi-
cient of common friends, density of common friends). Computing more expen-
sive structural attributes is not highly beneficial, especially in the presence of
group information.
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Figure 5.6: Prediction accuracy when links are treated equally, with and with-
out group affiliations. As the results from the affiliation overlays suggest, group
features are the main contributor to the high link-prediction accuracy.

used the following combinations of features: (1) using number of friends only, (2)

using number of friends and number of common friends, (3) using number of friends,

number of common friends and jaccard coefficient, and finally (4) using number of

friends, number of common friends, jaccard coefficient and density of common friends.

We are reporting on the results of these four sets of structural features together

with the descriptive attributes since we showed in the previous subsection that

using descriptive attributes can sometimes be beneficial. We also report on the

setting in which group features were used.

Surprisingly, it turned out that computing the more expensive features added

very little benefit. Figure 5.5 shows the results of the experiments. For example,

in the Dogster case, adding the number of common friends of two nodes improved

accuracy (F1 score) by 2% over the individual number of friends. Computing the

most expensive feature density of common friends pays off slightly (improves F1

score by 0.4%) only when there are no group attributes. Computing the more ex-

pensive jaccard coefficient did not pay off over using the simpler feature number of

common friends. In the Catster and Hamsterster cases, the improvement was less

126



that 0.5%. Our results also support the claim made in the preferential attachment

model [11] that the number of friends of a node (node degree) plays a role in the

process of new nodes linking to it. They contradict the link-prediction results in

co-authorship networks [80] where jaccard coefficient and the number of common

friends consistently out-performed the metric based on number of friends. This

may be inherent to the types of networks discussed.

Alternative network representations

In the next set of experiments, we used the alternative network overlays to

test whether there was an advantage to keeping the different types of links and

the affiliation groups. We compare our proposed different-link and affiliation over-

lay to the alternative representations same-link and no affiliation overlay and same-

link and affiliation overlay (see Section 5.3). We compute only the descriptive and

structural features in the overlay with no affiliation information, and compute all

classes of features in the overlays where affiliation information was given.

The results on Figure 5.6 show that when family affiliations were given, it

did not matter whether the links were treated as the same type or different types:

the link-prediction accuracy was the same. However, in the case when the af-

filiations were not given, it was better to compute the structural features using

both types of relationships but treat them as one type. When family links were

treated as friendship links, the accuracy of the predictions made by the structural

attributes improved by 6% to 20%. This may be due to the fact that the over-

lap between friends and family links in the data was very small, and using both
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types of links when computing the structural features was beneficial. Using the

affiliation information and computing all features on the data led to the best ac-

curacy, and the accuracy was the same both in the different-link and same-link

cases. These experiments also confirmed the previous results: group affiliation

was the main contributor to the high link-prediction accuracy.

5.5 Discussion

When studying other large social networks, family information is not al-

ways relevant or available. However, groups and affiliations are often available,

or communities can be discovered.

The networks used here had a binary relationships - friend or family - but a

similar effect can be achieved in networks where relationships are weighted. For

example, co-authorship networks are widely studied as social networks [11, 52,

80, 117, 118, 125, 127], and edges can be weighted by the number of articles a pair

of authors have authored together. In email communication networks - the Enron

email corpus [62, 67], for example - the number of messages between two senders

can be used as a weight. To mimic the strong family-type relationship we used

in this article, a threshold weight can be set. Any edge with a weight over that

threshold can be treated as a “strong” relationship (like our family relationship).

Clusters of nodes connected with strong ties represent the equivalent of a family

unit.
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5.6 Conclusions

Link prediction is a notoriously difficult problem. In this research, we found

that overlaying friendship and affiliation networks was very effective. For the

networks used in our study, we found that family relationships were very useful

in predicting friendship links. Our experiments show that we can achieve sig-

nificantly higher prediction accuracy (between 15% and 30% more accurate) as

compared to using more traditional features such as descriptive node attributes

and structural features. Family groups helped not only because they represent a

clique of actors, but because the family relationship itself was indicative of struc-

tural equivalence.
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Part III

Privacy in Social and Affiliation

Networks
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While predictive statistical models allow learning hidden information au-

tomatically in social and affiliation networks, they also bring many privacy con-

cerns because of the potentially sensitive nature of personal data. Even though

disclosing information on the web is a voluntary activity on the part of the users,

users are often unaware of who is able to access their data and how their data can

potentially be used.

Data privacy is defined as ”freedom from unauthorized intrusion” [140].

However, what constitutes an unauthorized intrusion in social networks is an

open question. Because privacy in social networks is a young field, we first iden-

tify the space of problems in this emerging area in Chapter 6. When appropriate

we present existing work, but many of these problems have not yet been ad-

dressed in the research literature. One of the contributions of this chapter is in

cataloging the different types of privacy disclosures in social networks. These

are studied in the research literature but they are often not explicitly formalized.

Chapter 6 allows to present our work in the context of other research on privacy

in social networks.

In Chapter 6, we focus on two scenarios for privacy in social networks: pri-

vacy breaches and data anonymization. In the first scenario, an adversary is in-

terested in learning the private information of an individual using publicly avail-

able social network data, possibly anonymized. In the second scenario, a data

provider is interested to release a social network dataset to researchers but pre-

serve the privacy of its users. For this purpose, the data provider needs to provide
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a privacy mechanism, so that researchers can access the (possibly perturbed) data

in a manner which does not compromise users’ privacy. A common assumption

in the data anonymization literature is that the data is described by a single ta-

ble with attribute information for each of the entries. However, social network

data can exhibit rich dependencies between entities which can be exploited for

learning the private attributes of users, and we explore the consequences of this

possibility.

The privacy literature recognizes two types of privacy mechanisms: inter-

active and non-interactive [34]. In the interactive mechanism, an adversary poses

queries to a database, and the database provider gives noisy answers. In the

non-interactive setting, a data provider releases an anonymized version of the

database to meet privacy concerns.

In addition to defining the space of problems, we study two specific pri-

vacy problems in social networks which we present in Chapter 7 and Chapter 8.

The first problem is attribute disclosure: inferring the private attributes of social

network users using their online social environment [153]. While this work has

similarities with both privacy mechanisms, the goal of our data provider is not

to anonymize a dataset or provide noisy answers but to ensure that users’ pri-

vate data remains private and cannot be inferred using links, groups and public

profiles. The second problem is link re-identification – inferring that two entities

participate in a particular type of sensitive relationship or communication [152].

We study this problem in in the non-interactive, anonymization setting. The chal-

lenge of anonymizing graph data lies in understanding the complex dependen-
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cies and removing sensitive information which can be inferred by direct or indi-

rect means.

In the attribute disclosure work (Chapter 7), we show how an adversary

can exploit an online social network with a mixture of public and private user

profiles to predict the private attributes of users. We map this problem to a rela-

tional classification problem and we propose practical models that use friend-

ship and group membership information (which is often not hidden) to infer

sensitive attributes. The key novel idea is that in addition to friendship links,

groups can be carriers of significant information. We show that on several well-

known social media sites, we can easily and accurately recover the information

of private-profile users. To the best of our knowledge, this is the first work that

uses link-based and group-based classification to study privacy implications in

social networks with mixed public and private user profiles.

Traditionally, only two types of privacy attacks have been studied in the pri-

vacy literature: attribute disclosure and identity disclosure. We identify a third

type of disclosure which can occur in social networks: link disclosure. In our link

re-identification work (Chapter 8), we focus on the problem of preserving the pri-

vacy of sensitive relationships in the non-interactive, anonymization setting. We

propose five different privacy preservation strategies, which vary in terms of the

amount of data removed (and hence their utility) and the amount of privacy pre-

served. We assume the adversary has an accurate predictive model for links, and

we show experimentally the success of different link re-identification strategies

under varying structural characteristics of the data.
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A common assumption in the anonymization literature is that the data is de-

scribed by a single table with attribute information for each of the entries. How-

ever, real-world datasets often exhibit more complexity. Social network data, of-

ten represented as a multi-graph, can exhibit rich dependencies between entities.

Our link-reidentification work is novel on two fronts: 1) breaking the assumption

that the data to be anonymized is a flat-table data and 2) studying a new type of

privacy attack which can occur in network data.
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Chapter 6

Privacy in Social Networks

Here, we survey the literature on privacy in social networks [154]. We for-

mally define the possible privacy breaches and describe the privacy attacks that

have been studied. We present definitions of privacy in the context of anonymiza-

tion together with existing anonymization techniques. While initial steps have

been taken in understanding and overcoming some of the challenges of preserv-

ing privacy online, many open problems remain. In particular, some exciting new

directions include studying the effect of different types of privacy disclosures on

each other, privacy-preserving techniques that prevent sensitive attribute disclo-

sure in networks, a comparison between existing anonymization techniques in

terms of utility, and privacy-preserving techniques that meet the individual pri-

vacy expectations of online social network users rather than privacy definitions

imposed by a data publisher or an online service provider.

In this chapter, we focus on privacy breaches in online social networks,

as well as on privacy-preserving techniques for publishing social network data.
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In addition, there are other existing surveys on privacy preservation in social

networks that focus on different aspects [27, 55, 85, 147, 160]. The surveys on

privacy-preserving data publication for networks cover privacy attacks, edge

modification, randomization and generalization privacy-preserving strategies for

network structure [85, 147, 160] and richer graphs [147]. Clarkson et al. [27] dis-

cuss anonymization techniques which aim to prevent identity disclosure. The

survey of Hay et al. [55] concentrates on privacy issues with network structure,

and it covers attacks and their effectiveness, anonymization strategies, and dif-

ferential privacy for private query answering.

In Section 6.1, we discuss the different types of privacy breaches: private

information that can leak from a social network. We define the types of queries

for each type of disclosure, and ways to measure the extent to which a disclo-

sure has occurred in an online or anonymized social network. We are abstracting

these definitions from the types of privacy breaches that have been studied in

data anonymization. The definitions can be applied both in the anonymization

scenario and in the scenario of an intrusion in an online social network. We also

provide pointers to work which studies these privacy breaches in the context of

anonymization. We present privacy definitions in Section 6.2 and privacy mech-

anisms for publishing social network data in Section 8.1.

137



6.1 Privacy breaches in social networks

When studying privacy, it is important to specify what defines a failure to

preserve privacy. A privacy breach occurs when a piece of sensitive information

about an individual is disclosed to an adversary, someone whose goal is to com-

promise privacy. Traditionally, two types of privacy breaches have been studied:

identity disclosure and attribute disclosure. We discuss these two types in the con-

text of social networks. We also present two more disclosure types, specific to

network data: social link disclosure and affiliation link disclosure.

6.1.1 Identity disclosure

Identity disclosure occurs when an adversary is able to determine the map-

ping from a profile v in the social network to a specific real-world entity p. Before

we are able to provide a formal definition of identity disclosure, let us consider

three questions related to the identity of p in which an adversary may be inter-

ested.

Definition 1 Mapping query. In a set of individual profiles V in a social network G,

find which profile v maps to a particular individual p. Return v.

Definition 2 Existence query. For a particular individual p, find if this individual has

a profile v in the network G. Return true or false.

Definition 3 Co-reference resolution query. For two individual profiles vi and vj ,

find if they refer to the same individual p. Return true or false.
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A simple way of defining identity disclosure is to say that the adversary can

answer the mapping query correctly and with full certainty. However, unless the

adversary knows unique attributes of individual p that can be matched with the

observed attributes of profiles in V , this is hard to achieve. One way of for-

malizing identity disclosure for an individual p is to assoicate a random variable

v̂p which ranges over the profiles in the network. We assume that the adver-

sary has a way of computing the probability of each profile vi belonging to in-

dividual p, Pr(v̂p = vi). In addition, we introduce a dummy profile vdummy in

the network which serves the purpose of absorbing the probability of individ-

ual p not having a profile in the network. We assume that p has exactly one

profile, and the true profile of p in V ∪ {vdummy} is v∗. We use the shorthand

Prp(vi) = Pr(v̂p = vi) to denote the probability that vi corresponds to p; Prp

provides a mapping Prp : V ∪ {vdummy} → R. We leave it open as to how the

adversary constructs Prp. Then we can define identity disclosure as follows:

Definition 4 Identity disclosure with confidence t. In a set of individual profiles V

in a social network G, identity disclosure occurs with confidence t when Prp(v∗) ≥ t and

v∗ 6= vdummy.

An alternative definition of identity disclosure considers that the possible val-

ues of vi can be ranked according to their probabilities.

Definition 5 Identity disclosure with top-k confidence. In a set of individual pro-

files V in a social network G, identity disclosure occurs with top-k confidence when v∗
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appears in the top k profiles (or top p% = k ∗ 100/|V |), in the list of profiles ranked by

Prp from high to low.

The majority of research in social network privacy has concentrated on iden-

tity disclosure [7, 22, 56, 57, 71, 86, 111, 145, 148, 159, 162]. We discuss it in more

detail in Section 8.1.

6.1.2 Attribute disclosure

A common assumption in the privacy literature is that there are three types

of possibly overlapping sets of personal attributes:

• Identifying attributes - attributes, such as social security number (SSN),

which identify a person uniquely.

• Quasi-identifying attributes - a combination of attributes which can identify

a person uniquely, such as name and address.

• Sensitive attributes - attributes that users may like to keep hidden from the

public, such as political affiliation and sexual orientation.

Attribute disclosure occurs when an adversary is able to determine the value

of a sensitive user attribute, one that the user intended to stay private. This at-

tribute can be an attribute of the node itself, the node’s links or the node’s af-

filiations. Without loss of generality, here we discuss the attributes of the node

itself. Again, to make this definition more concrete, we assume that each sen-

sitive attribute v.as for profile v has an associated random variable v.âs which

140



ranges over the possible values for v.as. Let the true value of v.as be v.a∗. We also

assume that the adversary can map the set of possible sensitive attribute values

to probabilities, Pra(v.âs = v.a) : v.a → R, for each possible value v.a. Note that

this mapping can be different for each node/profile. Now, we can define attribute

disclosure as follows:

Definition 6 Attribute disclosure with confidence t. For a profile v with a hid-

den attribute value v.as = v.a∗, attribute disclosure occurs with confidence t when

Pra(v.âs = v.a∗) ≥ t.

Similarly to identity disclosure, there is an alternative definition of attribute

disclosure which considers that the possible values of v.As can be ranked accord-

ing to their probabilities.

Definition 7 Attribute disclosure with top-k confidence. For a profile v with a hid-

den attribute value v.as = v.a∗, attribute disclosure occurs with top-k confidence when

a∗ appears in the top k values of the list of possible values ranked by their probabilities

Pra.

Clearly, if an adversary can see the identifying attributes in a social net-

work, then answering the identity mapping query becomes trivial, and identity

disclosure with confidence 1 can occur. For example, if a profile contains a SSN,

then identifying the real person behind the profile is trivial since there is a one-to-

one mapping between individuals and their social security numbers. Therefore,

in order to prevent identity disclosure, the identifying attributes have to be re-

moved from the profiles.
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Sometimes, a combination of attributes, known as quasi-identifying attributes,

can lead to identity disclosure. What constitutes quasi-identifying attributes de-

pends on the context. For example, it has been observed that 87% of individuals

in the U.S. Census from 1990 can be uniquely identified based on their date of

birth, gender and zip code [136]. Another example of quasi-identifiers is a com-

bination of a person’s name and address.

Similarly, matching records from different datasets based on quasi-identifying

attributes can lead to further privacy breaches. This is known as a linking attack.

If the identities of users in one dataset are known and the second dataset does not

have the identities but it contains sensitive attributes, then the sensitive attributes

of the users from the first dataset can be revealed. For example, matching health

insurance records, in which the identifying information is removed, with public

voter registration records can reveal sensitive health information about voters.

Using this attack, Sweeney was able to identify the medical record of the gover-

nor of Massachusetts [136].

In the context of social and affiliation networks, there has not been much

work on sensitive attribute disclosure. Most studies look at how attributes can

be predicted [110, 82, 153], and very few on how they can be protected [22]. We

discuss this work in more detail in Section 8.1.
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Figure 6.1: Sensitive link examples.

6.1.3 Social link disclosure

Social link disclosure occurs when an adversary is able to find out about the

existence of a sensitive relationship between two users, a relationship that these

users prefer to remain hidden from the public. Similarly to the previous types

of disclosures, we assume that there is a random variable êi,j associated with the

link existence between two nodes vi and vj , and an adversary has a model for

assigning a probability to êi,j , Pr(êi,j = true) : ei,j → R.

Definition 8 Social link disclosure with confidence t. For two profiles vi and vj ,

a social link disclosure occurs with confidence t when ev(vi, vj) ∈ Ev and Pr(êi,j =

true) ≥ t.

Note that since the link existence êi,j has only two possible values, true and false,

the top-k definition does not apply to social link disclosure.

Examples of sensitive relationships can be found in social networks, com-

munication data, disease data and others. In social network data, based on the
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friendship relationships of a person and the public preferences of the friends such

as political affiliation, it may be possible to infer the personal preferences of the

person in question as well. In cell phone communication data, finding that an

unknown individual has made phone calls to a cell phone number of a known

organization can compromise the identity of the unknown individual. In hered-

itary disease data, knowing the family relationships between individuals who

have been diagnosed with hereditary diseases and ones that have not, can help

infer the probability of the healthy individuals to develop these diseases. Fig-

ure 6.1 presents a summary of these examples.

Researchers have studied attacks that expose sensitive links in social net-

works [7, 14, 72, 152]. Sensitive edge properties, such as link strength (or weight),

have also been the focus of recent work [31, 88].

6.1.4 Affiliation link disclosure

Another type of privacy breach in relational data is affiliation link disclosure:

whether a person belongs to a particular affiliation group. Whether two users

are affiliated with the same group can also be of sensitive nature. Sometimes,

affiliation link disclosure can lead to attribute disclosure, social link disclosure,

or identity disclosure. Thus, hiding affiliations is a key to preserving the privacy

of individuals.

As before, we assume that there is a random variable êv,h associated with

the existence of an affiliation link between a profile v and a group h, and that an
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adversary has a way of computing the probability of êv,h, Pr(êv,h = true) : ev,h →

R.

Definition 9 Affiliation link disclosure with confidence t. For a profile v and an

affiliation group h, an affiliation link disclosure occurs with confidence t when eh(v, h) ∈

Eh and Pr(êv,h = true) ≥ t.

One type of disclosure can lead to another type. For example, Wondracek

et al. [145] show a de-identification attack in which affiliation link disclosure can

lead to the identity disclosure of a supposedly anonymous Internet user. An ad-

versary starts the attack by crawling a social networking website and collecting

information about the online social group memberships of its users. It is assumed

that the identities of the social network users are known. According to the col-

lected data, each user who participates in at least one group has a group sig-

nature, which is the set of groups he belongs to. Then, the adversary applies

a history stealing attack (for more details on the attack, see [145]) which collects

the web browsing history of the target Internet user. By finding the group sig-

natures of social network users which match the browsing history of the Internet

user, the adversary is able to find a subset of potential social network users who

may be the Internet user. In the last step of the attack, the adversary looks for

a match between the id’s of the potential users and the browsing history of the

target individual, which can lead to de-identification of the Internet user.

Another example of affiliation link disclosure leading to identity disclosure

is in search data. If we assume that users posing queries to a search engine are
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the individuals in the social network, and the search queries they pose are the

affiliation groups, then disclosing the links between users and queries can help

an adversary identify people in the network. Users interact with search engines

in an uninhibited way and reveal a lot of personal information in the text of their

queries. There was a scandal in 2006 when AOL, an Internet Service provider,

released an ”anonymized” sample of over half a million users and their queries

posed to the AOL search engine. The release was well-intentioned and meant to

boost search ranking research by supplementing it with real-world data. Each

user was specified by a unique identifier, and each query contained information

about the user identifier, search query, the website the user clicked on, the ranking

of that website in the search results, and the timestamp of the query.

Table 6.1: A snapshot of the data released by AOL. Here, we are omitting the
timestamps included in the data.
User ID Search query Clicked website Ranking
4417749 clothes for age 60 http://www.news.cornell.edu 10
4417749 dog who urinate on everything http://www.dogdayusa.com 6
4417749 landscapers in lilburn ga.
4417749 pine straw in lilburn ga. http://gwinnett-online.com 9
4417749 gwinnett county yellow pages http://directory.respond.com 1
4417749 best retirement place in usa http://www.amazon.com 7
4417749 mini strokes http://www.ninds.nih.gov 1

One of the problems with the released data was that even though it was in

a table format (Table 6.1), its entries were not independent of each other. Shortly

after the data release, New York Times reporters linked 454 search queries made

by the same individual which gave away enough personal information to iden-

tify that individual – Thelma Arnold, a 62-year old widow from Lilburn, Geor-

gia [12]. Her queries included names of people with the same last name as hers,
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information about retirement, her location, etc.

Affiliation link disclosure can also lead to attribute disclosure, as illustrated

in a guilt-by-association attack [29]. This attack assumes that there are groups of

users whose sensitive attribute values are the same, thus recovering the sensitive

value of one user and the affiliation of another user to the group can help recover

the sensitive value of the second user. This attack was used in the BitTorrent file-

sharing network to discover the downloading habits of users [26]. Communities

were detected based on social links, and monitoring only one user in each com-

munity was enough to infer the interests of the other people in the community. In

this case the sensitive attribute that users prefer to keep private is whether they

violate copyrights. This attack has also been applied to identifying fraudulent

callers in a phone network [29]. Cormode et al. [28] study data anonymization

to prevent affiliation link disclosure. They refer to affiliation links as associations

(see Section 6.3.2).

6.2 Privacy definitions for publishing data

The goal of data mining is discovering new and useful knowledge from

data. Sometimes, the data contains sensitive information, and it needs to be san-

itized before it is published publicly in order to address privacy concerns. Data

sanitization is a complex problem in which hiding private information trades off

with utility reduction. The goal of sanitization is to remove or perturb the at-

tributes of the data which help an adversary infer sensitive information. The
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Figure 6.2: Anonymization scenario.

solution depends on the properties of the data and the notions of privacy and

utility in the data.

Privacy preservation in the context of social network data is a relatively new

research field. Rather than assuming data which is described by a single table of

independent records with attribute information for each, it takes into considera-

tion more complex real-world datasets. As discussed earlier, relational data, of-

ten represented as a multi-graph, can exhibit rich dependencies between entities.

The challenge of sanitizing graph data lies in understanding these dependencies

and removing sensitive information which can be inferred by direct or indirect

means.

One way in which data providers can sanitize data is by anonymization.

Figure 8.1 shows a typical scenario in which a data owner is interested in pro-

viding researchers with valuable data and in order to meet privacy concerns, she
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consults a privacy analyst before publishing a perturbed version of the data. In

the process of anonymizing the data, the identifying information is removed and

other attributes are perturbed. Anonymizing techniques have been criticized as

often being ad hoc and not providing a principled way of preserving privacy.

There are no guarantees that an adversary would not be able to come up with

an attack which uses background information and properties of the data, such as

node attributes and observed links, to infer the private information of users. An-

other way of sanitizing data is by providing a private mechanism for accessing

the data, such as allowing algorithms which are provably privacy-preserving to

run on it. Next, we will discuss privacy preservation definitions. Some of these

definitions were not developed specifically for network data but we provide ex-

amples from the social network domain.

To formalize privacy preservation, Chawla et al. [24] proposed a frame-

work based on the intuitive definition that “our privacy is protected to the extent

we blend in the crowd.” Obviously, with the richness of information in online

social network profiles, this is hard to achieve and users are easily identifiable.

We will look at a simpler case when a data provider is interested in releasing a

dataset with online social network profiles. To give a flavor of existing work, we

present four existing privacy preservation approaches which make the definition

of ”blending in the crowd” more concrete.
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6.2.1 k-anonymity

k-anonymity protection of data is met if the information for each person

contained in the data cannot be distinguished from at least k − 1 other individu-

als in the data. k-anonymity can be achieved by suppressing and generalizing the

attributes of individuals in the data. Suppressing an attribute value means delet-

ing it from the perturbed data. Generalizing an attribute means replacing it with

a less specific but semantically consistent value. One can see that suppression

is a special case of generalization, and that suppressing all attributes guarantees

k-anonymity. This is why a notion of utility in the data has to be incorporated

whenever sanitizing data. The actual objective is to maximize utility by mini-

mizing the amount of generalization and suppression. Achieving k-anonymity

by generalization with this objective as a constraint is an NP-hard problem [5].

k-anonymity has been studied mostly for table data, so we begin by presenting

its definition using only the nodes V and their attributes V.A, i.e., disregarding

links and affiliation groups.

Definition 10 k-anonymity. A set of records V satisfies k-anonymity if for every tuple

v ∈ V there exist at least k − 1 other tuples vi1 , vi2 , ..., vik−1
∈ V such that vi1 .Aq =

vi2 .Aq = ... = vik−1
.Aq where Aq ∈ A are the quasi-identifying attributes of the profile.

Figure 6.3 shows an example of applying 5-anonymity to the data of 10 in-

dividuals. The data includes their names, ages, genders and zip codes. The per-

turbed data meets a 5-anonymity constraint because each individual is indistin-

guishable from at least 4 other individuals. Here, the assumption is that name is
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Figure 6.3: 5-anonymity applied to data with 10 records.

an identifying attribute, therefore it has been suppressed. Three of the attributes,

Age, Sex and Zip code, are quasi-identifiers, therefore, they have been generalized.

The sensitive attributes remain the same.

k-anonymity provides a clustering of the nodes into equivalence classes

such that each node is indistinguishable in its quasi-identifying attributes from

some minimum number of other nodes. In the previous example, there were

two equivalence classes: class C1 of individuals whose age is in the range [21, 24]

years and have a zip code 20 ∗ ∗∗, and class C2 of individuals whose age is in the

range [25, 31] years and have a zip code 832∗∗. Note, however, that these equiva-

lent classes are based on node attributes only, and inside each equivalence class,

there may be nodes with different identifying structural properties and edges.

This makes it hard to define k-anonymity for nodes in social networks. We dis-

cuss some approaches later in Section 8.1.
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k-anonymity ensures that individuals cannot be uniquely identified by a

linking attack. However, it does not necessarily prevent sensitive attribute dis-

closure. Here, we present two possible attacks on k-anonymized data [93]. The

first one can occur when there is little diversity in the sensitive attributes inside

an equivalence class. In this case, the sensitive attribute of everyone in the equiv-

alence class becomes known with high certainty. For example, if an adversary

wants to figure out Ana’s political views knowing that her age is 21 and her zip

code is 20740, then he can figure out that her record is in equivalence class C1.

There is no diversity in the sensitive attribute value of equivalence class C1, i.e.,

everyone in C1 has liberal political views, therefore, the adversary is able to infer

Ana’s political views even though he does not know which row corresponds to

her. This is known as the homogeneity attack [93].

The second problem with k-anonymity is that in the presence of background

knowledge, attribute and identity disclosure can still occur. For example, know-

ing that someone’s friends are liberal, makes it highly likely that this person is

liberal as well. In our toy example, the knowledge that Gina’s friends, Emma

and Fabio, belong to equivalence class C1 where everyone is liberal, can help an

adversary infer with high certainty that Gina is liberal as well. This is known as

the background attack [93].

There are a number of definitions derived from k-anonymity tailored to

structural properties of network data. Some examples include k-degree anonymity

[86], K-Candidate anonymity [57], k-automorphism anonymity [162], k-neighborhood

anonymity [159, 147], and (k,l)-grouping [28]. We introduce the intuition behind
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them, together with their definitions in Section 6.3.1 and Section 6.3.2, privacy

mechanisms for networks.

6.2.2 l-diversity and t-closeness

A privacy definition which alleviates the problem of sensitive attribute dis-

closure inherent to k-anonymity is l-diversity [93]. As its name suggests, l-diversity

ensures that the sensitive attribute values in each equivalence class are diverse.

Definition 11 l-diversity. A set of records in an equivalence class C is l-diverse if it

contains at least l ”well-represented” values for each sensitive attribute. A set of nodes V

satisfy l-diversity if every equivalence class C ′ ⊆ V is l-diverse.

There are a number of ways to define ”well-represented.” Some examples

include using frequency counts and measuring entropy. However, even in the

case of l-diverse data, it is possible to infer sensitive attributes when the sensi-

tive distribution in a class is very different from the overall distribution for the

same attribute. If the overall distribution is skewed, then the belief of someone’s

value may change drastically in the anonymized data (skewness attack) [79]. For

example, only 30% of the records in Figure 6.3 have conservative political views.

However, in equivalence class C2 this number becomes 60%, thus the belief that

a user is conservative increases for users in C2. Another possible attack, known

as the similarity attack [79], works by looking at equivalent classes which contain

very similar sensitive attribute values. For example, if Age is a sensitive attribute

and an adversary wants to figure out Ana’s age knowing that she is in equiva-
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lence class C1 (based on her Zip code), then he would learn that she is between 21

and 24 years old which is a much tighter age range than the range in the whole

dataset.

This leads to another privacy definition, t-closeness, which considers the

sensitive attribute distribution in each class, and its distance to the overall at-

tribute distribution. The distance can be measured with any similarity score for

distributions.

Definition 12 t-closeness. A set of records in an equivalence class C is t-close if the

distance between the distribution of a sensitive attribute As in C and its distribution in

V is no more than a threshold t. A set of nodes V satisfy t-closeness if every equivalence

class C ′ ⊆ V is t-close.

Just like with k-anonymity, sanitizing data to meet either l-diversity or t-

closeness comes with a computational complexity burden. There are other pri-

vacy definitions of this flavor but they have all been criticized for being ad hoc.

While they guarantee syntactic properties of the released data, they come with

no privacy semantics [35].

6.2.3 Differential privacy

The notion of differential privacy was developed as a principled way of

defining privacy, so that ”the risk to one’s privacy [...] should not substantially

increase as a result of participating in a database” [34]. This shifts the view on pri-

vacy from comparing the prior and posterior beliefs about individuals before and
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after publishing a database to evaluating the risk incurred by joining a database.

It also imposes a guarantee on the data release mechanism rather than on the data

itself. Here, the goal is to provide statistical information about the data while

preserving the privacy of users in the data. This privacy definition gives guaran-

tees that are independent of the background information and the computational

power of the adversary.

Returning to our running example, if the social network data set is released

using a differentially private mechanism, this guarantees that Ana’s participation

in the social network does not pose a threat to her privacy because the statistics

would not look very different without her participation. It does not guarantee that

one cannot learn sensitive information about Ana using background information

but such guarantee is impossible to achieve for any kind of dataset [34].

Definition 13 ε-differential privacy. A randomized functionK satisfies ε-differential

privacy if for all data sets D1 and D2 differing in at most one element, and any subset S

of possible outcomes in Range(K),

P (K(D1) ∈ S) ≤ exp(ε)× P (K(D2) ∈ S). (6.1)

Here, one can think of a profile in the social network as being an element,

and V being the data set, thus D1 ⊆ V and D2 ⊆ V . The randomized function

K can be thought of as an algorithm which returns a random variable, possibly

with some noise. When developing a differentially private algorithm, one has

to keep in mind the utility of the data and incorporate the desired knowledge in
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the algorithm. Range(K) is the output range of algorithm K. A common way of

achieving ε-differential privacy is by adding random noise to the query answer.

One type of algorithm that has been proven to be differentially private is a

count query to which one adds Laplacian noise [37]. For example, if the count

query is K =”How many people are younger than 22?”, then the output range of

the query is Range(K) = {1, ..., n} where n is the size of the social network. The

count query is considered a low-sensitivity query because it has a sensitivity of

∆K = 1 for any D1 and D2 differing in one element. Sensitivity is defined as

∆K = max
D1,D2

||K(D1)−K(D2)|| (6.2)

for any D1 and D2 which differ in at most one element. Note that this query has

the same sensitivity not only for our specific data but for any data in this format.

The Laplacian noise, which is added to the answer, is related to the sensitivity of

the query.

A mean query, such as K =”What is the average age of people in the social

network?”, has an even lower sensitivity for large data sets because removing

any profile from the social network changes the output of the query by at most

∆K = max(age)/n. There are also queries, such as median queries, which have

high sensitivity and require different techniques for generating noise.

A similar and somewhat weaker definition of differential privacy is the one

of (ε, δ)-differential privacy which was developed to deal with very unlikely out-

puts of K [36].

156



Definition 14 (ε,δ)-differential privacy. A randomized functionK satisfies ε-differential

privacy if for all data sets D1 and D2 differing in at most one element, and any subset S

of possible outcomes in Range(K),

P (K(D1) ∈ S) ≤ exp(ε)× P (K(D2) ∈ S) + δ. (6.3)

Generally, ε and δ are considered to be very small numbers and are picked ac-

cording to different considerations, such as the size of the database.

Machanavajjhala et al. provide the first theoretical study of the privacy-

utility trade-offs in link recommendation systems for social networks [94]. Recent

work has also shown that ”differential privacy does not always adequately limit

inference about participation in social networks” [65].

6.3 Privacy-preserving mechanisms

So far, we have discussed existing notions of privacy preservation related

to the user profiles, mostly ignoring the structural properties of the social net-

work. Next, we discuss how privacy preservation can be achieved considering

the network structure: the links between users Ev, and affiliation links Eh to af-

filiation groups of users H . First, we present existing privacy mechanisms for

social networks in Section 6.3.1. Section 6.3.2 includes overview of the mecha-

nisms for affiliation networks. Finally, we describe research which considers both

types of networks in Section 6.3.3. Except for the privacy mechanisms based on
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differential privacy, each mechanism was developed to counterattack a specific

adversarial attack and background knowledge which we also present.

6.3.1 Privacy mechanisms for social networks

The majority of research in this area considers anonymization which strips

off all the personal attributes from user profiles but keeps some of the structure

coming from the social links between users [7, 56, 57, 86, 159, 162]. We describe

this research next. Then, we mention approaches to anonymizing data which

consider that there is utility in keeping both user attributes and network struc-

tural [22, 152, 159].

Anonymizing network structure

One naı́ve way of anonymizing a social network is by removing all the at-

tributes of the profiles, and leaving only the social link structure. This creates

an anonymized graph which is isomorphic to the original graph. The intuition

behind this approach is that if there are no identifying profile attributes, then

attribute and identity disclosures cannot occur, and thus the privacy of users is

preserved. Contrary to the intuition, this not only removes a lot of important

information but it also does not guarantee the privacy of users. Two types of at-

tacks have been proposed to show that identity and social link disclosures occur

when it is possible to identify a subgraph in the released graph in which all the

node identities are known [7]. The active attack assumes that an adversary can

insert accounts in the network before the data release, and the passive attack as-
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sumes that a number of friends can collude and share their linking patterns after

the data release.

In the active attack an adversary creates k accounts and links them ran-

domly, then he creates a particular pattern of links to a set of m other users that

he is interested to monitor. The goal is to learn whether any two of the monitored

nodes have links between them. When the data is released, the adversary can

efficiently identify the subgraph of nodes corresponding to his k accounts with

provably high probability. Then he can recover the identity of the monitored m

nodes and the links between them which leads to social link disclosure for all
(
m
2

)
pairs of nodes. With as few as k = Θ(log n)) accounts, an adversary can recover

the links between as many as m = Θ(log2 n) nodes in an arbitrary graph of size

n. The passive attack works in a similar manner. It assumes that the exact time

point of the released data snapshot is known and that there are k colluding users

who have a record of what their links were at that time point.

Another type of structural background information that has been explored

is similar in spirit to the linking attack mentioned in Section 6.1. The existence of

an auxiliary social network in which the identity of users is known can help an

adversary identify nodes in a target social network [111]. Starting from a set of

users which form a clique both in the target and the auxiliary networks, an adver-

sary expands the matching by finding the most likely nodes that correspond to

each other in the two networks by using structural information, such as number

of user friends (node degree), and number of common neighbors. To validate this

attack, it has been shown that the discovered matches sometimes correspond to
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matches found using descriptive user attributes such as username and location

in the social networks of Twitter and Flickr [111].

Structural privacy. Starting from the idea that certain subgraphs in the so-

cial network are unique, researchers have studied the mechanism of protecting

individuals from identity disclosure when an adversary has background informa-

tion about the graph structure around a node of interest [56, 57, 86, 148, 159, 162].

Each node has structural properties (subgraph signature) that are the same as the

ones of a small set of other nodes in the graph, called a candidate set for this

node [57]. Knowing the true structural properties of a node, an adversary may be

able to discover the identity of that node in the anonymized network. Structure

queries can be posed to the network to discover nodes with specific subgraph

signatures.

Looking at the immediate one-hop neighbors, each node has a star-shaped

subgraph in which the size of the subgraph is equal to the degree of the node plus

one. With the assumption that identity disclosure can occur based on a node’s

degree, the degree becomes an identifying attribute that a data provider is inter-

ested to hide. In our toy network (Figure 1.2), Ana and Don are in each other’s

candidate sets because they both have degree 2; Emma, Gina and Fabio appear in

the same candidate set for either of the three nodes; Bob and Chris are uniquely

identifiable because they are the only ones in the network with degrees four and

one, respectively. The notion of k-degree anonymity [86] was formulated to protect

individuals from an adversary who has background information of user’s node

degrees. It states that each node should have the same degree as at least k − 1
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other nodes in the anonymized network.

Adding the links between the one-hop neighbors of a node, sometimes re-

ferred to as the 1.5-hop neighborhood, creates a richer structural signature. Based

on this, Ana and Don still have the same subgraph signature, and so do Emma

and Fabio. However, Gina has a unique signature and is easily identifiable by

an adversary who has knowledge of her true 1.5-hop neighborhood structure.

Zhou and Pei [159] formalize the desired property to protect individuals from

this type of attack. A graph satisfies k-neighborhood anonymity if every node in the

network has a 1.5-hop neighborhood graph isomorphic to the 1.5-hop neighbor-

hood graph of at least k− 1 other nodes. The name of this property was given by

Wu et al. [147].

In our example, Ana and Don become uniquely identifiable once we look

at their 2-hop neighborhoods. Emma and Fabio have isomorphic signatures re-

gardless of the size of the neighborhood for which the adversary has background

information. This leads to the most general privacy preservation definitions of

k-candidate anonymity [57] and k-automorphism anonymity [162].

Definition 15 K-Candidate anonymity. An anonymized graph satisfiesK-Candidate

Anonymity with respect to a structural query Q if there is a set of at least K nodes which

match Q, and the likelihood of every candidate for a node in this set with respect to Q is

less than or equal to 1/k.

K-Candidate anonymity [57], considers the structural anonymity of users

given a particular structural query, i.e., a subgraph signature. Hay et al. define
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three types of structural queries, vertex refinement queries, subgraph queries and

hub fingerprint queries [57, 56]. Zou et al. [162] assume a much more powerful

adversary who has knowledge of any subgraph signature of a target individual.

They propose the notion of k-automorphism anonymity to fend off such an adver-

sary.

Definition 16 k-automorphism anonymity. An anonymized graph is k-automorphic

if every node in the graph has the same subgraph signature (of arbitrary size) as at least

k− 1 other graph nodes, and the likelihood of every candidate for that node is less than or

equal to 1/k.

Anonymization. The anonymization strategies for social network structure

fall into four main categories:

• Edge modification. Since complete removal of the links to keep structural

properties private would yield a disconnected graph, edge modification

techniques propose edge addition and deletion to meet desired constraints.

Liu and Terzi anonymize the network degree sequence to meet k-degree

anonymity [86]. This is easy to achieve for low-degree nodes because the

degree distribution in social networks often follows a power law. For each

distinguishable higher-degree node, where distinguishable is defined as a

degree for which there are less than k nodes with that degree, the anonymiza-

tion algorithm increases its degree artificially so that it becomes indistin-

guishable from at least k − 1 other nodes. The objective function of the al-

gorithm is to minimize the number of edge additions and deletions. Zou et
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al. [162] propose an edge modification algorithm that achieves k-automorphism

anonymity.

• Randomization. Anonymization by randomization can be seen as a spe-

cial case of anonymization by edge modification. It refers to a mechanism

which alters the graph structure by removing and adding edges at random,

and preserves the total number of edges. Hay et al. [57] show that if this is

performed uniformly at random, then it fails to keep important graph met-

rics of real-world networks. Ying and Wu [148] propose spectrum-preserving

randomization to address this loss of utility. The graph’s spectral proper-

ties are the set of eigenvalues of the graph’s adjacency matrix to which im-

portant graph properties are related. Preserving this spectrum guides the

choice of random edges to be added and deleted. However, the impact of

this approach on privacy is unclear.

Two recent studies have presented algorithms for reconstructing random-

ized networks [141, 146]. Wu et al. [146] take a low rank approximation

approach and apply it to a randomized network structure, such that ac-

curate topological features can be recovered. They show that in practice

reconstruction may not pose a larger threat to privacy than randomization

because the original network is more similar to the randomized network

than to the reconstructed network. Vuokko and Terzi [141] consider recon-

struction mechanisms for networks where randomization has been applied

both to the structure and attributes of the nodes. They identify cases in
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which reconstruction can be achieved in polynomial time. The effect of both

reconstruction strategies on privacy has not been assessed.

• Network generalization. One way to alleviate an attack based on structural

background information is by publishing the aggregate information about

the structural properties of the nodes [56]. In particular, one can partition

the nodes and keep the density information inside and between parts of the

partition. Nodes in each partition have the same structural properties, so

that an adversary coming with a background knowledge is not able to dis-

tinguish between these nodes. In practice, sampling from the anonymized

network model creates networks which keep many of the structural proper-

ties of the original network, such as degree distribution, path length distri-

bution and transitivity. Network generalization strategies for other network

types are discussed in Section 6.3.1 [22, 152] and Section 6.3.3 [14].

• Differentially private mechanisms. Differentially private mechanisms re-

fer to algorithms which guarantee that individuals are protected under the

definition of differential privacy (see Section 6.2.3). Hay et al. [54] propose

an efficient algorithm which allows the public release of one of the most

commonly studied network properties, degree distribution, while guaran-

teeing differential privacy. The algorithm involves a post-processing step

on the differentially private output, which ensures a more accurate result.

The empirical analysis on real-world and synthetic networks shows that the

resulting degree-distribution estimate exhibits low bias and variance, and
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can be used for accurate analysis of power-law distributions, commonly oc-

curring in networks.

Anonymizing user attributes and network structure

So far, we have discussed anonymization techniques which perturb the

structure of the network but do not consider attributes of the nodes, such as gen-

der, age, nationality, etc. However, providing the (perturbed) structure of social

networks is often not sufficient for the purposes of the researchers who study

them. In another line of privacy research, the assumption is that anonymized

data will have utility only if it contains both structural properties and node at-

tributes.

Anonymization. Zhou and Pei [159] assume that each node has one at-

tribute which they call a label. They show that achieving k-neighborhood anonymity

is NP -hard and propose a greedy edge modification and label generalization algo-

rithm. The algorithm extracts the 1.5-neighborhood signatures for all nodes in

the graph and represents them concisely using DFS trees. Then it clusters the

signatures and anonymizes the ones in each cluster to achieve k-neighborhood

anonymity. The objective function of the algorithm is similar to the one of Liu

and Terzi [86], the minimization of the number of edge additions.

Zheleva and Getoor [152] study the problem of social link disclosure in

graphs with multiplex relations. The assumption is that an adversary has an

accurate statistical model for predicting sensitive relationships if given the at-

tributes of nodes and edges in the original data, therefore attributes have to be
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perturbed in the released data. They propose anonymization by generalization

of the data as a two-step process. In the first step, nodes are treated as a table of

records, and their attributes are anonymized to guarantee the privacy of users,

for example, to meet one of the privacy definitions described earlier. Using k-

anonymity, this creates a partition of the network nodes into equivalence classes.

In the second step, the structure of the network is partially preserved by keeping

aggregate structural information inside and between the equivalence classes.

Campan and Truta [22] also take a network generalization approach to anonymiz-

ing a social network. Their greedy algorithm optimizes a utility function using

the attribute and structural information simultaneously rather than as a two-step

process. They introduce a structural information loss measure, and adopt an ex-

isting measure of attribute information loss. The anonymization algorithm can

be adjusted to preserve more of the structural information of the network or the

nodes’ attribute values.

6.3.2 Privacy mechanisms for affiliation networks

Next, we concentrate on the affiliation network and discuss privacy-preserving

techniques developed specifically for this type of network. The affiliation net-

work is represented as a bipartite graph with two types of nodes V and H , and

the affiliation links between them Eh. Figure 6.4 shows an illustration of this

graph where on the left-hand side there are users, and on the right-hand side

there are movies that the users rated. The affiliation links have a weight corre-
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Figure 6.4: An affiliation network as a bipartite graph between three users and
two movies. The affiliation links show the ratings that users gave to the movies
on a scale from 1 to 5.

sponding to the movie ratings for each user, on a scale from 1 to 5.

Netflix, an online movie rental company, set up a competition aimed at

improving their movie recommendation systems. They released a dataset with

around 100 million dated ratings from 480 thousand randomly-chosen Netflix

customers. To protect customer privacy, each customer id has been replaced with

a randomly-assigned id. However, this naive anonymization was found to be

vulnerable under a linking attack [110]. Using the dates of user ratings and

matching the records released by Netflix and user profiles in IMDB, an online

movie database, Narayanan and Shmatikov [110] were able to achieve identity

and sensitive attribute disclosure for some of the users in the Netflix dataset.

A related problem is the problem of releasing a search query graph in which

user information is contained in the affiliation links between search engine queries

and clicked website URLs [71]. In particular, there is a bipartite graph of (query,URL)
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(a)

(b)

Figure 6.5: a) User-query graph representing the users, their queries, the websites
they clicked on and the ranking of each website, and b) its reformulation into a
search query graph.
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pairs.Here, the links have a weight corresponding to the number of users who

posed a particular query and clicked on the particular URL. In addition, there are

links between queries with a weight equal to the number of users who posed the

first query and then reformulated it into the second query. Each query also has

counts of the number of times the query was posed to the search engine. The

utility in such data is in using it for learning better search ranking algorithms.

Figure 6.5(a) shows an example a user-query graph. Figure 6.5(b) shows its refor-

mulation into a search query graph where individual users are not represented

explicitly but only as aggregate numbers.

Anonymization

Two types of privacy mechanisms for affiliation networks have been stud-

ied in the research literature:

• Network generalization. Cormode et al. [28] propose a privacy definition

for affiliation networks, (k,l)-grouping, tailored to prevent sensitive affilia-

tion link disclosure. The authors make the assumption that affiliation links

can be predicted based on node attributes and the structure of the network.

They show why existing table anonymization techniques fail to preserve the

structural properties of the network, and propose a greedy anonymization

algorithm which keeps the structure intact but generalizes node attributes.

The algorithm requires that each node is indistinguishable from at least

k − 1 other nodes in terms of node properties, and each affiliation group
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is indistinguishable from at least l − 1 other affiliation groups, the basis of

(k, l)-grouping. The utility is in being able to answer accurately aggregate

queries about users and affiliation groups.

• Differentially private mechanisms. A private mechanism for a recom-

mender system has been developed specifically for the movie recommen-

dation setting [104]. The system works by providing differentially private

mechanisms for computing counts, rating averages per movie and per user,

and the movie-movie covariances in the data. These statistics are sufficient

for computing distances based on k-nearest neighbor for predicting the rat-

ings associated with new affiliation links. Using the statistics released by

the mechanism, the algorithm performs with an accuracy comparable to

the one in the original data.

Korolova et al. [71] propose an (ε,δ)-differentially private algorithm which

allows the publication of a search query graph for this purpose. Here the

search logs are the database, and pairs of databases D1 and D2 are consid-

ered to differ in one element when one database excludes the search logs

of exactly one user. The algorithm keeps only a limited number of queries

and clicks for each user and allows for two types of functions on the graph

which are sufficient for evaluating ranking algorithms. The first function

gives a search query and its noisy count if it exceeds a pre-specified thresh-

old. The second function publishes the noisy weight of the (query,URL) link

for the top URLs for each query which was safe to publish according to the
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first function.

6.3.3 Privacy mechanisms for social and affiliation networks

There has not been much research on the privacy implications of the inter-

play between social and affiliation networks. It is obvious that they inherit all the

privacy issues discussed so far for either type of network. What is not so obvious

is that the complex dependencies these networks create can allow an adversary

to learn private information in intricate ways. In particular, one can use the so-

cial environment of users to learn private information about them. One type of

attack, which we call an attribute inference attack, assumes that an attribute is sen-

sitive only for a subset of the users in the network and that the other users in the

network are willing to publish it publicly [153]. The analogy in real-world social

networks is the existence of private and public profiles. The attack works by cre-

ating a statistical model for predicting the sensitive attribute using the publicly

available information and applying that model to predict the users with private

profiles. In its basic form, the attack assumes that besides the network structure,

the only user attributes that are available are the sensitive attribute value for the

public profiles. Naturally, using other profile attributes can create even more

powerful statistical models, as Lindamood et al. show [82]. An adversary suc-

ceeds when he can recover the sensitive attribute values for a subset of the nodes

with high probability.

By taking into account all social and affiliation links, often declared pub-
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licly in online social networks, the model can use link-based classification tech-

niques. Link-based classification breaks the assumption that data comprises of

independent and identically distributed (iid) nodes and it can take advantage

of autocorrelation, the property that attributes of linked objects often correlated

with each other. For example, political affiliations of friends tend to be similar,

students tend to be friends with other students, etc. A comprehensive survey of

models for link-based classification can be found in the work by Sen et al. [131].

The results of Zheleva and Getoor [153] suggest that link-based classification can

predict sensitive attributes with high accuracy using information about online

social groups, and that social groups have a higher potential for leaking personal

information than friendship links.

Anonymization

Bhagat et al. [14] consider attacks for sensitive social link disclosure in so-

cial and affiliation networks, to which they refer as rich interaction graphs. Two

nodes participating in the same group is also considered as a sensitive social link

between the two users. Bhagat et al. represent the social and affiliation networks

as a bipartite graph, in which one type of nodes are the users and the other type

of nodes are affiliation groups. Social links are represented as affiliation groups

of size two.

They propose two types of network generalization techniques to prevent so-

cial link disclosure. The first technique, a uniform list approach, keeps the structure

intact, in a manner similar to (k, l)-groupings [28]. It divides nodes into classes

172



of size m ensuring that each node’s interactions fall on nodes of different classes.

Each class is split into label lists of size k, thus ensuring that the probability of a

link between two users (through a social link or a common affiliation group) is at

most 1/k. If the adversary has a background knowledge of the identities of r of

the nodes and k is equal to m, then this probability becomes 1/(k − r). The sec-

ond technique, a partitioning approach, also divides the nodes into classes of size

m so that each node’s interactions fall on nodes of different classes. However, it

does not keep the original network structure, and publishes only the number of

edges between partitions. The probability of a link between two users is guaran-

teed to be at most 1/m with or without background knowledge. The utility of the

anonymized graph is in allowing accurate structural and attribute analysis of the

graph.

6.4 Related literature

Research on privacy in online social networks is a very young field which

discovers and addresses some of the challenges of preserving the privacy of in-

dividuals in an interconnected world [7, 14, 22, 56, 57, 72, 71, 82, 86, 111, 148, 153,

152, 159, 162]. However, privacy research has a longer history in the data mining,

database and security communities. For example, privacy-preserving data min-

ing aims at creating data mining algorithms and systems which take into consid-

eration the sensitive content of the data [140, 4]. Chen et al. [25] provide a com-

prehensive, recent survey of the field of privacy-preserving data publishing. The
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database and security communities have studied interactive and non-interactive

mechanisms for sharing potentially sensitive data [34]. Most of this research as-

sumes that there are one or more data owners who are interested to provide data

access to third parties while meeting privacy constraints. In contrast, access to

data in online social networks is often freely available, and users can specify their

personal privacy preferences. Addressing the new privacy challenges in this area

is an active area of research [66]. The unexpected threats of freely publishing

personal data online is exemplified by a number of researchers [1, 82, 111, 153].

boyd points out many privacy concerns and ethical issues, related to the analysis

of large online social network data [30]. Measuring the privacy of social network

users and enabling them to personalize their online privacy preferences has also

been the focus of recent work [87, 41]. Privacy in dynamic social networks has

also received recent attention [15, 162].

6.5 Conclusion

Here, we presented the possible privacy breaches in online social networks,

together with existing privacy definitions and mechanisms for preserving user

privacy. While initial steps have been taken in understanding and overcom-

ing some of the challenges of preserving privacy online, many open problems

remain. In particular, some exciting new directions include studying the ef-

fect of different types of privacy disclosures on each other, privacy-preserving

techniques that prevent sensitive attribute disclosure in networks, a compari-
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son between existing anonymization techniques in terms of utility, and privacy-

preserving techniques that meet the individual privacy expectations of online

social network users rather than privacy definitions imposed by a data publisher

or an online service provider.
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Chapter 7

Attribute Disclosure

In order to address users’ privacy concerns, a number of social media and

social network websites, such as Facebook, Orkut and Flickr, allow their partici-

pants to set the privacy level of their online profiles and to disclose either some

or none of the attributes in their profiles. While some users make use of these

features, others are more open to sharing personal information. Some people feel

comfortable displaying personal attributes such as age, political affiliation or lo-

cation, while others do not. In addition, most social-media users utilize the social

networking services provided by forming friendship links and affiliating with

groups of interest. While a person’s profile may remain private, the friendship

links and group affiliations are often visible to the public. Unfortunately, these

friendships and affiliations leak information; in fact, as we will show, they can

leak a surpisingly large amount of information.

The problem we consider is sensitive attribute inference in social networks:

inferring the private information of users given a social network in which some
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profiles and all links and group memberships are public (this is a commonly oc-

curring scenario in existing social media sites). We define the problem formally

in Section 7.3. We believe our work is the first one to look at this problem, and to

map it to a relational classification problem in network data with groups.

Here, we propose eight privacy attacks for sensitive attribute inference. The

attacks use different classifiers and features, and show different ways in which

an adversary can utilize links and groups in predicting private information. We

evaluate our proposed models using sample datasets from four well-known so-

cial media websites: Flickr, Facebook, Dogster and BibSonomy. All of these web-

sites allow their users to form friendships and participate in groups, and our

results show that attacks using the group information achieve significantly better

accuracy than the models that ignore it. This suggests that group memberships

have a strong potential for leaking information, and if they are public, users’ pri-

vacy in social networks is illusionary at best.

Our contributions include the following:

• We identify a number of novel privacy attacks in social networks with a mix-

ture of public and private profiles.

• We propose that in addition to friendship links, group affiliations can be car-

riers of significant information.

• We show how to reduce the large number of potential groups in order to im-

prove the attribute accuracy.

• We evaluate our attacks on challenging classification tasks in four social media
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datasets.

• We illustrate the privacy implications of publicly affiliating with groups in

social networks and discuss how our study affects anonymization of social

networks.

• We show how surprisingly easy it is to infer private information from group

membership data.

First, we motivate the problem in the next section. Section 7.3 presents the

privacy attacks, and Section 8.5 provides experimental results using these attacks.

Section 7.5 discusses the broader implications of our results.

7.1 Motivation

Disclosing private information means violating the rights of people to con-

trol who can access their private information. In order to prevent private infor-

mation leakage, it is important to be aware of the ways in which an adversary

can attack a social network to learn users’ private attributes. Studies on the chal-

lenges of preserving the privacy of individuals in social networks have emerged

only in the last few years, and they have concentrated on inferring the identity

of nodes based on structural properties such as node degree. In contrast, we are

interested in inferring sensitive attribute of nodes using approaches developed

for relational learning, another active area of research in the last few years.

The novelty of our work is that we study the implications of mixing pri-

vate and public profiles in a social network. For example, in Facebook many
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users choose to set their profiles to private, so that no one but their friends can

see their profile details. Yet, fewer people hide their friendship links and even

if they do, their friendship links can be found through the backlinks from their

public-profile friends. Similarly for group participation information – even if a

user makes her profile private, her participation in a public group is shown on

the group’s membership list. Currently, neither Facebook nor Flickr allow users

to hide their group memberships from public groups. Both commercial and gov-

ernmental entities may employ privacy attacks for targeted marketing, health

care screening or political monitoring – just to mention a few. Therefore, social

media website providers need to protect their users against undesired eavesdrop-

ping and inform them of the possible privacy breaches and providing them with

the means to be in full control of their private data.

Our work is also complimentary to work on data anonymization, in which

the goal is to perturb data in such a way that the privacy of individuals is pre-

served. Our goal is not to release anonymized data but to illustrate how social

network data can be exploited to predict hidden information: an essential knowl-

edge in the anonymization process.

We identify a new type of privacy breach in relational data, group member-

ship disclosure: whether a person belongs to a group relevant to the classification

of a sensitive attribute. We conjecture that group membership disclosure can lead

to attribute disclosure. Thus, hiding group memberships is a key to preserving

the privacy of individuals.
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Figure 7.1: Toy instance of the data model.

7.2 Sensitive attributes

The data model is the same as the one presented in Section 1.1 except that

it assumes that some of the personal attributes are missing, such as in Figure 7.1.

We assume that each node v has a sensitive attribute v.a which is either observed

or hidden in the data. A sensitive attribute is a personal attribute, such as age,

political affiliation or location, which some users in the social network are willing

to disclose publicly. A sensitive attribute value can take on one of a set of possible

values {a1...am}. A private profile is one for which the sensitive attribute value is

unknown, and a public profile is the opposite: a profile with an observed sensitive

attribute value. We refer to the set of nodes with private profiles as the sensitive

set of nodes Vs, and to the rest as the observed set Vo. The adversary’s goal is to

predict Vs.a, the sensitive attributes of the private profiles.
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Here, we study the case where nodes have no other attributes beyond the

sensitive attribute. Thus, to make inferences about the sensitive attribute, we

need to use some form of relational classifier. While additional attribute infor-

mation can be helpful and many relational classifiers can make use of it, in our

setting this is not possible because all of the private-profile attributes are likely to

be hidden.

In our toy example (Figure 7.1), Chris, Don, Emma and Fabio are displaying

their attribute values publicly, while Ana, Bob and Gia are keeping theirs private.

Emma and Chris have the same sensitive attribute value (marked solid), Bob,

Gia and Fabio share the same attribute value (marked with stripes), and Ana

and Don have a third value (marked with a brick pattern). While affiliating with

some groups may be related to the sensitive attribute, affiliating with others is

not. For example, if the sensitive attribute is a person’s country of origin, the

”Yucatan” group may be relevant. Thus, this group can leak information about

sensitive attributes, although the manner in which it is leaked is not necessarily

straightforward.

7.3 Sensitive-attribute inference models

The attributes of users who are connected in social networks are often corre-

lated. At the same time, online communities allow very diverse people to connect

to each other and form relationships that transcend gender, religion, origin and

other boundaries. As this happens, it becomes harder to utilize the complex in-
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teractions in online social networks for predicting user attributes.

Attribute disclosure occurs when an adversary is able to infer the sensitive

attribute of a real-world entity accurately. The sensitive attribute value of an indi-

vidual can be modeled as a random variable. This random variable’s distribution

can depend on the overall network’s attribute distribution, the friendship net-

work’s attribute distribution and/or the attribute distribution of each group the

user joins.

The problem of sensitive attribute inference is to infer the hidden sensitive val-

ues, Vs.a, conditioned on the observed sensitive values, links and group member-

ship in graph G. We assume that the adversary can apply a probabilistic model

M for predicting the hidden sensitive attribute values, and he can combine the

given graph information in various ways as we discuss next. The prediction of

each model is:

vs.âM = argmax
ai

PM(vs.a = ai;G).

where PM(vs.a = ai;G) is the probability that the sensitive attribute value of node

vs ∈ Vs is ai according to model M and the observed part of graph G.

We assume that the overall distribution of the sensitive attribute is either

known or it can be found using the public profiles. An attack using this distribu-

tion is a baseline attack. A successful attack is one which, given extra knowledge,

e.g., friendship links or group affiliations, has a significantly higher accuracy than
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the baseline attack. The extra knowledge compromises the privacy of users if there

is an attack which uses it and is successful.

7.3.1 Attacks without links and groups

In the absence of relationship and group information, the only available

information is the overall marginal distribution for the sensitive attribute in the

public profiles. So, the simplest model is to use this as the basis for predicting

the sensitive attributes of the private profiles. More precisely, according to this

model, BASIC, the probability of a sensitive attribute value can be estimated as

the fraction of observed users who have that sensitive attribute value:

PBASIC(vs.a = ai;G) = P (vs.a = ai|Vo.a) =
|Vo.ai|
|Vo|

,

where |Vo.ai| is the number of public profiles with sensitive attribute value ai and

|Vo| is the total number of public profiles. The adversary using model BASIC

picks the most probable attribute value which in this case is the overall mode

of the multinomial attribute distribution. In our toy example, the most common

observed sensitive attribute is the value that Chris and Emma share. Therefore,

the adversary would predict that Ana, Bob and Gia have the same attribute value

as well. An obvious problem with this approach is that if there is a sensitive

attribute value that is predominant in the observed data, it will be predicted for

all users with private profiles. Nevertheless, this attack is always at least as good

as a random guess, and we use it as a simple baseline. Next, we look at using
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Figure 7.2: Graphical representation of the models. Grayed areas correspond to
variables that are ignored in the model.

friendship information for inferring the attribute value.

7.3.2 Privacy attacks using links

Link-based privacy attacks take advantage of autocorrelation, the property

that the attribute values of linked objects are correlated. An example of autocor-

relation is that people who are friends often share common characteristics (as in

the proverb ”Tell me who your friends are, and I’ll tell you who you are”). Fig-

ure 7.2(a) shows a graphical representation of the link-based classification model.

There is a random variable associated with each sensitive attribute v.a, and the

sensitive attributes of linked nodes are correlated. The greying of the other two

types of random variables means that the group information is not used in this

model.

Friend-aggregate model (AGG)

The nodes and their links produce a graph structure in which one can iden-

tify circles of close friends. For example, the circle of Bob’s friends is the set

of users that he has links to: Bob.F = {Ana,Chris, Emma, Fabio}. The friend-
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aggregate model AGG looks at the sensitive attribute distribution amongst the

friends of the person under question. According to this model, the probability of

the sensitive attribute value can be estimated by:

PAGG(vs.a = ai;G) = P (vs.a = ai|Vo.a, Ev) =
|V ′o .ai|
|V ′o |

where V ′o = {vo ∈ Vo|∃ev(vs, vo) ∈ Ev} and V ′o .ai = {vo ∈ V ′o |vo.a = ai}.

Again, the adversary using this model picks the most probable attribute

value (i.e., the mode of the friends’ attribute distribution). In our toy exam-

ple (Figure 7.1), Bob will be assigned the same value as Emma and Chris, Ana

the same label as Don, and Gia will be undecided between Don’s, Emma’s and

Fabio’s label. One problem with this method is the one when person’s friends are

very diverse, as in Gia’s case, it will be difficult to make a prediction.

Collective classification model (CC)

Collective classification also takes advantage of autocorrelation between

linked objects. Unlike more traditional methods, in which each instance is classi-

fied independently of the rest, collective classification aims at learning and infer-

ring class labels of linked objects together. In our setting, it makes use of not only

the public profiles but also the inferred values for connected private profiles. Col-

lective classification has been an active area of research in the last decade (see Sen

et al. [131] for a survey). Some of the approximate inference algorithms proposed

include iterative classification (ICA), Gibbs sampling, loopy belief propagation
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and mean-field relaxation labeling.

For our experiments, we have chosen to use ICA because it is simple, fast

and has been shown to perform well on a number of problems [131]. In our

setting, ICA first assigns a label to each private profile based on the labels of the

friends with public profiles, then it iteratively re-assigns labels considering the

labels of both public and private-profile friends. The assignment is based on a

local classifier which takes the friends’ class labels as features. For example, a

simple classifier could assign a label based on the majority of the friends labels.

A more sophisticated classifier can be trained using the counts of friends’ labels.

Flat-link model (LINK)

Another approach to dealing with links is to ”flatten” the data by consider-

ing the adjacency matrix of the graph. In this model, each row in the matrix is a

user instance. In other words, each user has a list of binary features of the size

of the network, and each feature has a value of 1 if the user is friends with the

person who corresponds to this feature, and 0 otherwise. The user instance also

has a class label which is known if the user’s profile is public, and unknown if it

is private. The instances with public profiles are the training data which can be

fed to any traditional classifier, such as Naı̈ve Bayes, logistic regression or SVM.

The learned model can then be applied to predict the private profile labels.
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Blockmodeling attack (BLOCK)

The next category of link-based methods we explored are approaches based

on blockmodeling [142, 6]. The basic idea behind stochastic blockmodeling is that

users form natural clusters or blocks, and their interactions can be explained by

the blocks they belong to. In particular, the link probability between two users is

the same as the link probability between their corresponding blocks. If sensitive

attribute values separate users into blocks, then based on the observed interac-

tions of a private-profile user with public-profile users, one can predict the most

likely block the user belongs to and thus discover the attribute value. Let block

Bi denote the set of public profiles that have attribute value ai, and λi,j the prob-

ability that a link exists between users in block Bi and users in block Bj . Thus, λi

is the vector of all link probabilities between block Bi and each block B1, ..., Bm.

Similarly, let the probability of a link between a single user v and a block Bj be

λ(v)j with λ(v) being the vector of link probabilities between v and each block. To

find the probability that a private-profile user belongs to a particular block, the

model looks at the maximum similarity between the interaction patterns (link

probability to each block) of the node in question and the overall interactions be-

tween blocks. After finding the most likely block, the sensitive attribute value is

predicted. The probability of an attribute value using the blockmodeling attack,

BLOCK, is estimated by:
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PBLOCK(vs.ai;G) = P (vs.ai|Vo.A, Ev, λ) =
1

Z
sim(λi, λ(v))

where sim() can be any vector similarity function and Z is a normalization factor.

We compute maximum similarity using the minimum L2 norm. This model is

similar to the class-distribution relational-neighbour classifier described in [95]

when the weight of each directed edge is inversely proportional to the size of the

class of the receiving node.

7.3.3 Privacy attacks using groups

In addition to link or friendship information, social networks offer a very

rich structure through the group memberships of users. All individuals in a

group are bound together by some observed or hidden interest(s) that they share,

and individuals often belong to more than one group. Thus, groups offer a broad

perspective on a person, and it may be possible to use them for sensitive attribute

inference. If a user belongs to only one group (as it is Gia’s case in the toy exam-

ple), then it is straightforward to infer a label using an aggregate, e.g., the mode,

of her groupmates’ labels, similar to the friend-aggregate model. This problem

becomes more complex when there are multiple groups that a user belongs to,

and their distributions suggest different values for the sensitive attribute. We

propose two models for utilizing the groups in predicting the sensitive attribute

– a model which assumes that all groupmates are friends and one which takes
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groups as classifier features.

Groupmate-link model (CLIQUE)

One can think of groupmates as friends to whom users are implicitly linked.

In this model, we assume that each group is a clique of friends, thus creating a

friendship link between users who belong to at least one group together. This

data representation allows us to apply any of the link-based models that we have

already described. The advantage of this model is that it simplifies the problem

to a link-based classification problem, which has been studied more thoroughly.

One of the disadvantages is that it doesn’t account for the strength of the rela-

tionship between two people, e.g. number of common groups.

Group-based classification model (GROUP)

Another approach to dealing with groups is to consider each group as a

feature in a classifier. While some groups may be useful in inferring the sensitive

attribute, a problem in many of the datasets that we encountered was that users

were members of a very large number of groups, so identifying which groups are

likely to be predictive is a key. Ideally, the model would discard group member-

ships irrelevant to the classification task. For example, the group ”Yucatan” may

be relevant for finding where a person is from, but ”Espresso lovers” may not be.

To select the relevant groups, one can apply standard feature selection crite-

ria [84]. If there are N groups, the number of candidate group subsets is 2N , and

finding an optimal feature subset is intractable. Similar to pruning words in doc-
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ument classification, one can prune groups based on their properties and eval-

uate their predictive accuracy. Example group properties include density, size

and homogeneity. Smaller groups may be more predictive than large groups,

and groups with high homogeneity may be more predictive of the class value.

For example, if the classification task is to predict the country that people are

from, a cultural group in which 90% of the people are from the same country

is more likely to be predictive of the country class label. One way to measure

group homogeneity is by computing the entropy of the group: Entropy(h) =

−
∑m

i=1 p(ai) log2 p(ai) where m is the number of possible node class values and

p(ai) is the fraction of observed members that have class value ai: p(ai) = |h.V.ai|
|h.V | .

For example, the group ”Yucatan” has an entropy of 0 because only one

attribute value is represented there, therefore its homogeneity is very high. We

also consider the confidence in the computed group entropy. One way to measure

this is through the percent of public profiles in the group.

The group-based classification approach contains three main steps as Al-

gorithm 6 shows. In the first step, the algorithm performs feature selection: it

selects the groups that are relevant to the node classification task. This can ei-

ther be done automatically or by a domain expert. Ideally, when the number

of groups is high, the feature selection should be automated. For example, the

function isRelevant(h) can return true if the entropy of group h is low. In the

second step, the algorithm learns a global function f , e.g., trains a classifier, that

takes the relevant groups of a node as features and returns the sensitive attribute

value. This step uses only the nodes from the observed set whose sensitive at-
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tributes are known. Each node v is represented as a binary vector where each

dimension corresponds to a unique group: {groupId : isMember}, v.a. Only

memberships to relevant groups are considered and v.a is the class coming from

a multinomial distribution which denotes the sensitive-attribute value. In the

third step, the classifier returns the predicted sensitive attribute for each private

profile. Figure 7.2(b) shows a graphical representation of the group-based classi-

fication model. It shows that there is a dependence between the nodes’ sensitive

attributes V.a, the group memberships Eh and the group attributes H.A.

Algorithm 6 Group-based classification model
1: Set of relevant groups Hrelevant = ∅
2: for each group h ∈ H do
3: if isRelevant(h) then
4: Hrelevant = Hrelevant ∪ {h}
5: end if
6: end for
7: trainClassifier(f, Vo, Hrelevant)
8: for each sensitive node v ∈ Vs do
9: v.â = f(v.Hrelevant)

10: end for

7.3.4 Privacy attacks using links and groups

It is possible to construct a method which uses both links and groups to

predict the sensitive attributes of users. We use a simple method which combines

the flat-link and the group-based classification models into one: LINK-GROUP.

This model uses all links and groups as features, thus utilizing the full power

of available information. Like LINK and GROUP, LINK-GROUP can use any

traditional classifier.
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Table 7.1: Properties of the four datasets.
PROPERTY FLICKR FACEBOOK DOGSTER BIBSONOMY

No. of users 9,179 1,598/965 2,632 31,715
No. of links 941,677 86,007/33,597 4,482 N/A
No. of groups 47,754 2,932/2,497 1,042 132,554
Avg. in-sample degree 142 108/70 1 N/A
Avg. no. groups per user 162 24/25 1 98
Avg. group size 31 10/9 3 9
Largest group size 4,527 290/221 118 7,182
% same-label node links 23.5% 49.9%/40.3% - N/A
No. of possible labels 55 2/6 7 2
Sensitive attribute location gender/polviews breed category spammer

7.4 Experiments

We evaluated the effectiveness of each of the proposed models for inferring

sensitive attributes in social networks.

7.4.1 Data description

For our evaluation, we studied four diverse online communities: the photo-

sharing website Flickr, the social network Facebook, Dogster, an online social

network for dogs, and the social bookmarking system BibSonomy1. Table 7.1

shows properties of the datasets, including the sensitive attributes.

Flickr is a photo-sharing community in which users can display photographs,

create directed friendship links and participate in groups of common interest.

Users have the choice of providing personal information on their profiles, such

as gender, marital status and location. We collected a snowball sample of 14, 451

users from it. To resolve their locations (which users enter manually, as opposed

1At http://www.flickr.com, http://www.facebook.com, http://www.dogster.
com, http://www.bibsonomy.org/
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to choosing them from a list), we used a two-step process. First, we used Google

Maps API2 to find the latitude and longitude of each location. Then, we mapped

the latitude and longitude back to a country location using the reverse-geocoding

capabilities of GeoNames3. We discarded the profiles with no resolved country

location (34%), and ones that belonged to a country with less than 10 representa-

tives. The resulting sample contained 9, 179 users from 55 countries. There were

47, 754 groups with at least 2 members in the sample.

Facebook is a social network which allows users to communicate with each

other, to form undirected friendship links and participate in groups and events.

We used a part of the Facebook network, available for research purposes [78]. It

contains all 1, 598 profiles of first-year students in a small college. The dataset

does not contain group information but it contains the favorite books, music and

movies of the users, and we considered them to be the groups that unify people.

1, 225 of the users share at least one group with another person, and 1, 576 users

have friendship links. All profiles have gender and 965 have self-declared politi-

cal views. We use six labels of political views - very liberal or liberal (545 profiles),

moderate (210), conservative or very conservative (114), libertarian (29), apathetic (18),

and other (49).

Dogster is a website where dog owners can create profiles describing their

dogs, as well as participate in group memberships. Members maintain links to

friends and family. From a random sample of 10, 000 Dogster profiles, we re-

2At http://code.google.com/apis/.
3At http://www.geonames.org/export/.
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Table 7.2: Attack accuracy assuming 50% private profiles in Flickr, Facebook (FB),
Dogster and BibSonomy (Bib). The successful attacks are shown in bold.

ATTACK MODEL FLICKR FB-GENDER FB-POLVIEWS DOGSTER BIB

BASIC 27.7% 50.0% 56.5% 28.6% 92.2%
Random guess 1.8% 50.0% 16.7% 14.3% 50%
BLOCK 8.8% 49.1% 6.1% - -
AGG 28.4% 50.2% 57.6% - -
CC 28.6% 50.4% 56.3% - -
LINK 56.5% 68.6% 58.1% - -
CLIQUE-LINK 46.3% 51.8% 57.1% 60.2% -
GROUP 63.5% 73.4% 45.2% 65.5% 94.0%
GROUP* 83.6% 77.2% 46.6% 82.0% 96.0%
LINK-GROUP 64.8% 72.5% 57.8% - -

moved the ones that do not participate in any groups. The remaining 2, 632 dogs

participate in 1, 042 groups with at least two members each. Dogs have breeds,

and each breed belongs to a broader type set. In our dataset, there were mostly

toy dogs (749). The other breed categories were working (268), herding (202), terrier

(232), sporting (308), non-sporting (225), hound (152) and mixed dogs (506).

The fourth dataset contains publicly available data from the social book-

marking website BibSonomy4, in which users can tag bookmarks and publica-

tions. Although BibSonomy allows users to form friendships and join groups of

interest, the dataset did not contain this information. Therefore, we consider each

tag placed by a person to be a group to which a user belongs. There are no links

between users other than the group affiliations. There are 31, 715 users with at

least one tag, 98.7% of which posted the same tag with at least one other user.

The sensitive attribute is the binary attribute of whether someone is a spammer

or not.
4At http://www.kde.cs.uni-kassel.de/ws/rsdc08/.
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Figure 7.3: GROUP prediction accuracy on Flickr with 50% private profiles and
relevant groups chosen based on (a) varying size, (b) varying entropy, and (c) a
varying minimum requirement for the number of public profiles per group (max-
imum entropy cutoff at 0.5). Accuracy for various percent of public profiles in the
network (d): the less public profiles, the worse the accuracy and therefore, the
better the privacy of users.

7.4.2 Experimental setup

We ran experiments for each of the presented attack models: 1) the base-

line model, an attack in the absence of link and group information (BASIC), 2)

the friend-aggregate attack (AGG), 3) the collective classification attack (CC),

4) the flat-link attack (LINK) and 5) the blockmodeling attack (BLOCK), 6) the

groupmate-link attack (CLIQUE), 7) the group-based classification attack with

all groups (GROUP), 8) the group-based classification attack in which relevant

groups are selected in a way to have 50% node coverage (GROUP*), and 9) the

attack which uses both links and groups (LINK-GROUP). For the BLOCK model,
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we present leave-one-out experiments assuming that complete information is

given in the network in order to predict the sensitive attribute of a user. For

the AGG, CC, LINK, CLIQUE, GROUP and LINK-GROUP models, we split the

data into test and training by randomly assigning each profile to be private with

a probability n%. For LINK, GROUP and LINK-GROUP, we used an implemen-

tation of SVM for multi-value classification [139].

Groups were marked as relevant to the classification task either based on

maximum size cutoff, maximum entropy cutoff and/or minimum percent of pub-

lic profiles in the group. For each experiment, we measure accuracy, node cover-

age and group coverage. Accuracy is the correct classification rate, node coverage

is the portion of private profiles for which we can predict the sensitive attribute,

and group coverage is the portion of groups used for classification. The reported

results are the averages over 5 trials for each set of parameters. We consider an

attack to be successful if its average accuracy minus its standard deviation was

larger than the baseline accuracy plus its standard deviation.

7.4.3 Sensitive-attribute inference results

Table 7.2 provides a summary of the results, assuming 50% private profiles.

We see a wide variation in the performance of the different methods. GROUP*

considers 50% node coverage, i.e. it shows the accuracy for half of the private-

profile users who participate in a group with at least one other user. We also

present experiments for varying % of private profiles (Figure 7.3(d) and Fig-
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ure 7.5).

Flickr

Link-based attacks. Not surprisingly, in the absence of link and group in-

formation, our baseline achieved a relatively low accuracy (27.7%). However,

surprisingly, the link-based methods AGG and CC also performed quite badly.

AGG’s accuracy was 28.4%, predicting that most users were from the United

States. The iterative collective classification attack, CC, performed slightly, but

not significantly, better (28.6%). Clearly, Flickr users do not form friendships

based on their country of origin and country attribute in Flickr is not autocor-

related (only 23% of the links are between users from the same country). Another

possible explanation is that the class had a very skewed distribution which per-

sisted in friendship circles. The blockmodeling attack, BLOCK, performed worse,

with only 8.8% accuracy, showing that users from a particular country did not

form a natural block to explain their linking patterns. The only successful link-

based attack was the ”flattened” link model, LINK. With simple binary features,

it achieved an accuracy of 56.5%. We performed experiments based on both in-

links and outlinks, as well as ignoring the direction of the links. The results were

slightly better using undirected links, and these are the results we report.

From a privacy perspective, the results from the link-based models are ac-

tually positive, showing that in this dataset, exposing the friendship links is not

a serious threat to privacy for the studied attribute. The only model which per-

formed well, LINK, shows that if an adversary tries to predict private attributes
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Figure 7.4: Assuming 50% public profiles, the GROUP accuracy drops signifi-
cantly if Flickr users with private profiles do not join low-entropy groups.

Figure 7.5: GROUP prediction accuracy on (a) Dogster and (b) BibSonomy.

of users using it, then he has almost a 50-50 chance of being wrong.

Group-based attacks. Next, we evaluate the attacks which used groups. For

the CLIQUE model, we converted the groupmate relationships into friendship

relationships. This led to an extremely high densification of the network. From

an average of 142 friends per user, the average node degree became 7, 239 (out

of maximum possible 9, 178). Since the CLIQUE model can use any of the link-

based models, we chose to use it with the LINK model because it performed best

from the link-based models. This CLIQUE-LINK model has an accuracy of 46.3%

and due to the lack of sparsity, its training took much longer time than any of the

other approaches.

The group-based classification results were more promising. We evaluated
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our methods under a wide range of conditions, and we report on the ones that

provided more insight in terms of high accuracy and node coverage. Figure 7.3(a)

shows that naı̈vely running GROUP on all group memberships, the prediction

accuracy was 63.5%. However, as larger groups are excluded, the accuracy im-

proves even further (72.1%). This shows that medium to small-sized groups are

more informative. Choosing the relevant groups based solely on their entropy

shows even better results (Figure 7.3(b)). Using the groups with entropy lower

than 0.5 resulted in the best accuracy. We also pruned groups based on varying

percentages of public profiles per group which raised the accuracy even further

(Figure 7.3(c)). Other advantages of choosing relevant groups were that it re-

duced the group space by 71.2% and that SVM training time was much shorter.

The disadvantage is that as we prune groups, some of the users do not belong to

any of the chosen groups, thus the node coverage decreases: 51% of the private

profile attributes were predicted with 83.6% accuracy.

For privacy purposes, this is a strong result, and it means that groups can

help an adversary predict the sensitive attribute for half of the users with private

profiles with a high accuracy. Figure 7.3(d) shows that the more the private pro-

files in the network, the worse the accuracy. However, even in the case of mostly

private profiles, the GROUP attack is still successful (63.4%). The reported re-

sults are for the case when the minimum portion of public profiles per group is

equal to the portion in the overall network and the cutoff for the maximum group

entropy is at 0.5.

Looking at the most and least relevant groups also provides interesting in-
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sights. The most heterogeneous group that our method found is ”worldwide-

wondering - a travel atlas.” As its name suggests, it pertains to users from dif-

ferent countries and using it to predict someone’s country seems useless. Some

of the larger homogeneous groups include ”Beautiful NC,” ”Disegni e scritte sui

muri” and ”*Nederland belicht*”. Other homogeneous groups were related to

country but not in such an obvious manner. For example, one of them has the

nondescript name ”::PONX::” which turned out to be the title of a Mexican mag-

azine. For one user we looked at, this group helped us determine that although

he claims to be from all over the world, he is most likely from Mexico.

Mixed model. The model which uses both links and groups as features,

LINK-GROUP, did not perform statistically different from the GROUP model

(64.8%). This showed that adding the links to the GROUP model did not lead

to an additional benefit.

Insights on privacy preservation. Since including only low-entropy groups

significantly boosts the success of the group-based attack, we conjectured that

not participating in low-entropy groups helps people preserve their privacy bet-

ter. Figure 7.4 shows that if users with private profiles do not join low-entropy

groups, then GROUP is no longer successful.

Facebook

We performed the same experiments for Facebook as for Flickr, and we pro-

vide a summary of the results here.
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Link-based attacks. In predicting gender, we found that while AGG, CC and

BLOCK performed similarly to the baseline, LINK’s accuracy varied between

65.3% and 73.5%. In predicting the political views, the link-based methods per-

formed similarly to the baseline as Table 7.2 shows. LINK’s average accuracy was

not significantly different from the rest. We also performed binary classification

to predict whether someone is liberal or not and the results were similar. The

best-performing method was LINK with 61.8% accuracy. From privacy perspec-

tive, this result means that while it is easy to predict gender, it is hard to predict

the political views of Facebook users based on their friendships.

Group-based attacks. The GROUP attack was successful in predicting gender

(73.4%) when using all groups. Selecting groups that have at least 50% public

profiles per group raised the accuracy by 4% but dropped the node coverage by

a half. Predicting political views with GROUP was not successful (45.2%); some

possible explanations are that the groups we considered are not real social groups

and that books, movies and music taste of first-year college students may not be

related to their political views. The relatively low number of groups may also

have had an effect.

Mixed model. Again, LINK-GROUP did not perform statistically different

from the other best-performing models (72.5% for gender, 57.8% for political

views).
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Dogster

Link-based attacks. Due to the fact that this was a random rather than a snow-

ball sample, there were only 432 nodes with links, and link-based methods are at

an unfair disadvantage, so we do not report their results here.

Group-based attacks. The baseline accuracy was 28.6%. CLIQUE-LINK’s

accuracy was significantly higher (60.2%), as was GROUP’s accuracy (65.5%)

when there were 50% public profiles. Pruning groups based on entropy led to

even higher accuracy (88.9%) but had lower node coverage (14.9%). Figure 7.5(a)

shows the accuracy and node coverage for various private profile percentage as-

sumptions. We tried different options for the maximum group entropy required,

and here, we report on the results for 0.5. The accuracy increased significantly

as the number of public profiles in the network increased with one exception:

the accuracies for 70% and 90% public profiles did not have a statistically signif-

icant difference. A group named ”All Fur Fun” was the least homogeneous of

all groups, i.e., had the highest group entropy of 2.7. The online profile of the

group shows that this is a group that invites all dogs to party together, so it is not

surprising that dogs of many different breeds join.

BibSonomy

Group-based attacks. We used the BibSonomy data to see whether the group-

based classification approach can help in predicting whether someone is a spam-

mer or not. There is a large class skew in the data: most of the labeled user profiles
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are spammer profiles and the baseline accuracy is 92.2%. Using all groups when

50% of the profiles are public leads to a statistically significant improvement in

the accuracy (94%) and has a very good node coverage (98.5%); this covers al-

most all users with tags that at least one other user uses (98.7%). The accuracy

results for BibSonomy are presented in Figure 7.5(b). We explored different op-

tions for the minimum entropy required, and we report on the results for it being

0, i.e., only completely homogeneous groups were chosen. As in the other re-

sults, the coverage gets lower when the most homogeneous groups are chosen

(which in the spam case is actually undesirable). Precision was 99.9-100% in all

group-based classification cases, meaning that virtually all predicted spammers

were such, whereas in the baseline case, it is 92.2%. The results also suggest that if

more profiles were labeled, then more covered spammers can be caught. Some of

the homogeneous tags with many taggers include ”mortgage” and ”refinance.”

7.5 Discussion

Privacy. Our work shows that groups can leak a significant amount of in-

formation and not joining homogeneous groups preserves privacy better. People

who are concerned about their privacy should consider properties of the groups

they join, and social network providers should warn their users of the privacy

breaches associated with joining groups. Obviously, in dynamically-evolving en-

vironments, it is harder to assess whether a group will remain diverse as more

people join and leave it. Another privacy aspect is the ability to join public groups

203



but display group memberships only to friends. Currently, neither Facebook nor

Flickr allow group memberships to be private and this is a desirable solution to

the problem we have discussed.

Surprisingly, link-based methods did not perform as well as we expected.

This suggests that breaking privacy in social networks with mixed private and

public profiles is not necessarily straightforward, and using friends in classify-

ing people has to be treated with care. We also conjecture that this depends on

the dataset. For example, while link-based methods were not very successful in

predicting the location of users in Flickr, they may work well in LiveJournal; for

example, a study by Liben-Nowell et al. [81] showed that most of the friendship

links in LiveJournal are related to geographical proximity. Another important

point to consider is the nature of the sensitive attribute we are trying to predict.

For example, predicting someone’s political views may be a very hard task in

general. Recent research by Baldassarri et. al. [9] shows that most Americans are

neither consistently liberal nor conservative, and thus labeling a person as one or

the other is inappropriate.

In some cases, the assumption that unpublished private attributes can be

predicted from those made public may not hold. This happens when the attribute

distribution in private profiles is very different from the one in public profiles. An

extreme example is a disease attribute which shows values for common diseases

such as Flu, Fever, etc, in public profiles, whereas more sensitive values such as

HIV appear only in private profiles. In a similar example, young people tend to

make their age public, and older ones tend to keep it secret. We plan to address
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this issue in future work.

Data anonymization. The challenge of anonymizing graph data lies in under-

standing the rich dependencies in the data and removing sensitive information

which can be inferred by direct or indirect means. Here, we show attribute-

disclosure attacks in data which is meant to be partially private. Our results

suggest that a data provider should consider removing groups that are homo-

geneous in respect to sensitive attributes before releasing an anonymized dataset

in the public domain. Our privacy attacks are also meant to show that more so-

phisticated anonymization techniques are necessary.

Data mining. We show that it is possible to predict the attributes of some

users with hidden profiles and create better statistics of the attribute’s overall

distribution. For example, if a marketing company can predict the gender and

location of users with hidden profiles, it can improve its targeted marketing. As

groups with higher entropy are added, the uncertainty associated with the at-

tribute prediction increases, and it becomes harder to utilize the existence of di-

verse groups for sensitive attribute inference.

Remaining research questions. There are a number of interesting questions

that remain to be answered: What are the properties that make a social network

vulnerable to a group-based attack? Are profiles on social media websites more

or less vulnerable than ones on a purely networking website? What are the spe-

cific privacy guidelines that a social network website provider should follow to

ensure its users are protected against unintended privacy leaks? Do users with

private profiles have group-membership patterns that are different and more
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privacy-preserving from public-profile members? These are questions of social

relevance and we hope that our research will inspire more work in this area.

7.6 Conclusion

While having a private profile is a good idea for the privacy-concerned

users, their links to other people and affiliations with public groups pose a threat

to their privacy. In our attribute disclosure work, we showed how one can exploit

a social network with mixed profiles to predict the sensitive attributes of users.

Using group information, we were able to discover the sensitive attribute values

of some users with surprisingly high accuracy on four real-world social-media

datasets. We hope that these results will raise the privacy awareness of social me-

dia users and will motivate social media websites to enable greater control over

release of information and to help their users understand the potential for leaking

information.
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Chapter 8

Link Disclosure

The goal of data mining is discovering new and useful knowledge from

data. Sometimes, the data contains sensitive information, and it needs to be san-

itized before it is given to data mining researchers and the public in order to

address privacy concerns. Data sanitization is a complex problem in which hid-

ing private information trades off with utility reduction. The goal of sanitization

is to remove or change the attributes of the data which help an adversary infer

sensitive information. The solution depends on the properties of the data and the

notions of privacy and utility in the data.

Most of the work in this area makes the assumption that the data is de-

scribed by a single table with attribute information for each of the entries. How-

ever, real-world datasets often exhibit more complexity. Relational data, often

represented as a multi-graph, can exhibit rich dependencies between entities. The

challenge of anonymizing graph data lies in understanding these dependencies

and removing sensitive information which can be inferred by direct or indirect
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means.

Very little work has been done in this direction, and there has been a grow-

ing interest in it. The existing work looks at the identifying structural properties

of the graph nodes [7, 56], or considers relations to be attributes of nodes [114].

Our work assumes that the anonymized data will be useful only if it contains both

structural properties and node attributes. We study anonymization techniques to

match this assumption.

In this section, we focus on the problem of preserving the privacy of sen-

sitive relationships in graph data. We refer to the problem of inferring sensitive

relationships from anonymized graph data as link re-identification. We propose

five different privacy preservation strategies, which vary in terms of the amount

of data removed (and hence their utility) and the amount of privacy preserved.

We assume the adversary has an accurate predictive model for links, and we

show experimentally the success of different link re-identification strategies un-

der varying structural characteristics of the data.

Unlike existing work on privacy preservation which concentrates on hid-

ing the identity or attributes of entities, we look at the case where relationships

between entities are to be kept private. Finding out about the existence of these

sensitive relationships leads to a privacy breach. We refer to the problem of infer-

ring sensitive relationships from anonymized graph data as link re-identification.

Examples of sensitive relationships can be found in social networks, com-

munication data, search engine data, disease data and others. In social network

data, based on the friendship relationships of a person and the public preferences

208



of the friends such as political affiliation, it may be possible to infer the personal

preferences of the person in question as well. In cell phone communication data,

finding that an unknown individual has made phone calls to a cell phone number

of a known organization can compromise the identity of the unknown individual.

Another example is in search data: being able to link search queries made by the

same individual can give personal information that helps identify that individual.

In hereditary disease data, knowing the family relationships between individuals

who have been diagnosed with hereditary diseases and ones that have not, can

help infer the probability of the healthy individuals to develop these diseases.

We consider the node data to be anonymized using a known single-table

definition such as k-anonymization [130] or the more recently proposed t-closeness

[79]. For the edge data, we propose five different anonymization strategies. The

most conservative approach is to remove the relationships altogether, thus pre-

serving any privacy that these relationships may compromise. We assume that

while all of the sensitive relationships are removed, all or a portion of the rela-

tionships of other types are left intact in the anonymized data. We propose a

method which allows modeling the influence of data attributes on sensitive re-

lationships, and studying how different anonymization techniques can preserve

privacy. The privacy breach is measured by counting the number of sensitive re-

lationships that can be inferred from the anonymized data. The utility of the data

is measured by counting how many attributes or observations have to be deleted

in the sanitization process.

To formalize privacy preservation, Chawla et al. [24] propose a framework
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based on the intuitive definition that “our privacy is protected to the extent we

blend in the crowd.” What needs to be specified in this general framework is an

abstraction of the concept of a database, the adversary information and its func-

tionality, and when an adversary succeeds. Starting from this idea, we define the

relational privacy framework for link re-identification. First, we discuss meth-

ods for anonymizing graph data and the resulting adversary information in Sec-

tion 8.1. Section 8.2 covers graph-based privacy attacks, Section 8.3 discusses gen-

eral link re-identification attacks, and Section 8.4 discusses link re-identification

in anonymized data and when an adversary succeeds. Section 8.5 presents the

benefits and disadvantages of each anonymization method in an experimental

setting.

For the purpose of this work, we consider a multiplex graph G = (V,Ev),

composed of a set of nodes V and sets of social links Ev = {E1, . . . , Ek, Es} of

k + 1 different types. The links E1, . . . , Ek are the observed relationships, and

Es is the sensitive relationship, meaning that it is undesirable to disclose the es

edges to the adversary. In this representation, all affiliation links Eh are con-

verted into social links where a social link of type Ehx exists between two nodes

if both of them have affiliation links to groups hj , i.e. ∃ehx(vi, vj) ∈ Ehx ⇐⇒

∃eh(vi, hx)and∃eh(vj, hx). We use the short notation eki,j to specify ek(vi, vj).

In the process of anonymizing the data, the sensitive relationships are al-

ways removed, i.e., they are not provided in the released data. However, it may

be possible to predict some of these relationships using other observed relation-

ships and/or node attributes. For the purposes of this chapter, we focus on pre-
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Figure 8.1: The original data graph (a)) and the output from five anonymization
approaches to graph data: b) revealing the observations between nodes, c) re-
moving 50% of the observations , d) revealing all the observations between equiv-
alence classes of nodes (cluster-edge anonymization), e) constrained revealing of
the observations between equivalence classes of nodes (cluster-edge anonymiza-
tion with constraints), f) removing all relational observations. There are three dif-
ferent edge types in the original data graph represented by different line styles.
Clusters resulting from node anonymization are circled with dotted lines.

dicting sensitive edges based on the observed edges, but it is straightforward to

include node and edge attributes and interesting to also consider structural prop-

erties. If the sensitive edges can be identified, then we say that there has been a

privacy breach.

In addition, the data can include certain constraints which specify the num-

ber of relationships of a particular type or the number of relationships connecting

any two nodes. Constraints can also be inequality constraints describing the max-

imum or minimum number of relationships.

As a motivating example, consider the case where the entities are students,

and the relationships between students vi and vj include taking a class hc to-
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gether (ehc(vi, vj)), belonging to the same research group hg (ehg(vi, vj)), and be-

ing friends (es(vi, vj)). We can consider the class and research groups as the types

of the edges, so that students can take more than one class together, and they

can belong to more than one research group. In this case, we may consider es, the

friendship between two people, to be the sensitive relationship. We are interested

in understanding how difficult it is to determine friendship based on class and

research group rosters.

8.1 Graph anonymization

The process of anonymization involves taking the unanonymized graph

data, making some modifications, and constructing a new released graph which

will be made available to the adversary. The modifications include changes to

both the nodes and edges of the graph. We discuss several graph anonymiza-

tion strategies and, for each approach, we discuss the tradeoffs between privacy

preservation and the utility of the anonymized data.

We assume that the adversary has the information contained in the released

graph data, and the constraints on the data. The adversary succeeds when she

can figure out whether two nodes exhibit a sensitive relationship, i.e., when she

is able to correctly predict a sensitive link between them. For example, if the

adversary can figure out which students are likely to be friends given the released

graph, then the data discloses private information about the two individuals.
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8.1.1 Node anonymization

We assume that the nodes have been anonymized with one of the tech-

niques introduced for single table data. For example, the nodes could be k-

anonymized using t-closeness [79]. This anonymization provides a clustering

of the nodes into m equivalence classes (C1, . . . , Cm) such that each node is indis-

tinguishable in its quasi-identifying attributes from some minimum number of

other nodes. We use the following notation C(vi) = Ck to specify that a node vi

belongs to equivalence class Ck.

The anonymization of nodes creates equivalent classes of nodes. Note, how-

ever, that these equivalent classes are based on node attributes only, and inside

each equivalence class, there may be nodes with different identifying structural

properties and edges.

8.1.2 Edge anonymization

For the relational part of the graph, we describe five possible anonymization

approaches. They range from one which removes the least amount of information

to a very restrictive one, which removes the greatest amount of relational data.

Figure 8.1(a) shows a simple data graph in which there are ten nodes and eight

observed edges. There are three edge types, and each one is represented by a

different line style. We will illustrate each of our techniques on this graph. For

each approach, we discuss the tradeoffs between privacy preservation and the

utility of the anonymized data.

213



Intact edges

The first (trivial) edge anonymization option is to only remove the sensi-

tive edges, leaving all other observational edges intact. Figure 8.1(b) shows an

illustration of this technique applied to the original data graph of Figure 8.1(a).

In our running example, we remove the friendship relationships, since they

are the sensitive relationships, but we leave intact the information about students

taking classes together and being members of the same research group. Since the

relational observations remain in the graph, this anonymization technique should

have a high utility. But it is likely to have low privacy preservation.

Intact-Edge Anonymization Algorithm
1: Input: G = (V,E1, . . . , Es)

2: Output: G′ = (V ′, E1′ , . . . , Ek
′
)

3: V’=anonymize-nodes(V)
4: for t=1 to k do
5: Et

′
= Et

6: end for

Figure 8.2: Algorithm for anonymizing graph data by removing only the sensitive
edges.

Partial-edge removal

Another anonymization option is to remove some portion of the relational

observations. We could either remove a particular type of observation which con-

tributes to the overall likelihood of a sensitive relationship, or remove a certain

percentage of observations that meet some pre-specified criteria (e.g., at random,

connecting high-degree nodes, etc.). Figure 8.1(c) shows an illustration of this

technique when the edges are removed at random.
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This partial edge removal process should increase the privacy preservation

and reduce the utility of the data as compared to the previous method. Removing

observations should reduce the number of node pairs with highly likely sensitive

relationships but it does not remove them completely. For those pairs of nodes,

private information may be disclosed.

Partial-Edge Anonymization Algorithm
1: Input: G = (V,E1, . . . , Ek, Es), percent-removed
2: Output: G′ = (V ′, E1′, . . . , Ek

′
))

3: V’=anonymize-nodes(V)
4: for t=1 to k do
5: Et

′
= Et

6: removed = dpercent-removed ×‖Et′‖e
7: for i=1 to removed do
8: ei = random edge from Et

′

9: Et
′
= Et

′ \ {ei}
10: end for
11: end for

Figure 8.3: Algorithm for anonymizing graph data by removing randomly a por-
tion of the observed edges.

Cluster-edge anonymization

In the above approaches, while the nodes had been anonymized, the num-

ber of nodes in the graph was still the same, and the edges were essentially

between copies of the anonymized nodes. Another approach is to collapse the

anonymized nodes into a single node for each cluster, and then consider which

edges to include in the collapsed graph.

The simplest approach is to leave the sets of edges intact, and maintain the

counts of the number of edges between the clusters for each edge type. We refer to

this technique as cluster-edge anonymization. Figure 8.4 presents the algorithm for
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this technique, and Figure 8.1(d) shows an illustration of the result from applying

the algorithm.

Cluster-Edge Anonymization Algorithm
1: Input: G = (V,E1, . . . , Ek, Es),
2: Output: G′ = (V ′, E1′, . . . , Ek

′
))

3: V ′ = {C1, . . . , Cm}
4: for t=1 to k do
5: Et

′
= ∅

6: for all (vi,vj)∈ Et do
7: Ci = C(vi)
8: Cj = C(vj)
9: Et

′
= Et

′ ∪ {(Ci, Cj)}
10: end for
11: end for

Figure 8.4: Algorithm for cluster-edge anonymization technique.

Cluster-edge anonymization with constraints

Next, we consider using a stricter method for sanitizing observed edges

than the previous technique. The cluster-edge anonymization with constraints tech-

nique creates edges between equivalence classes as above, but it requires the

equivalence class nodes to have the same constraints as any two nodes in the

original data. For example, if there can be at most two edges of a certain type

between entities, there can be at most two edges of a certain type between the

cluster nodes. This, in effect, removes some of the count information that is re-

vealed in the previous anonymization technique.

In order to determine the number of edges of a particular type connecting

two equivalence classes, the anonymization algorithm picks the maximum of the

number of edges of that type between any two nodes in the original graph. In
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Cluster-Edge Anonymization with Constraints Algorithm
1: Input: G = (V,E)
2: Output: G′ = (V ′, E′)
3: V ′ = {C1, . . . , Cm}
4: for t=1 to k do
5: Et

′
= ∅

6: for all (vi, vj) ∈ Et do
7: Ci = C(vi)
8: Cj = C(vj)
9: if (Ci, Cj) /∈ Et′ then

10: Et
′
= Et

′ ∪ {(Ci, Cj)}
11: end if
12: end for
13: end for

Figure 8.5: Algorithm for cluster-edge with constraints anonymization technique.

our earlier example, if the maximum number of common classes that any pair

of students from the two equivalence classes takes is one class together, then the

equivalence classes are connected by one class edge. Figure 8.1(e) shows an illus-

tration of this technique.

This information will keep some of the utility of the data but it will say

nothing of the distribution of observations. The anonymized data hides whether

all observations appear on one two-node edge or on all two-node edges, and

whether they ever appear in the same two-node edge. This may reduce the pri-

vacy breach on each sensitive relationship.

Removed edges

The most conservative anonymization option is to remove all the edges.

Depending on the intended uses of an anonymized social network, removing

the node and/or edge attributes completely may be undesirable. For example,
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if one wants to know whether any first-year students took a particular course

together, then all the three types of information, i.e., edges, edge attributes (such

as edge type) and node attributes, are necessary. In our toy example, while taking

a course together is information contained in a network edge, the name of the

course is an edge attribute, and the year of enrollment is a node attribute. In

this case, this anonymization technique leads to very low utility, yet high privacy

preservation.

No-Edge Anonymization Algorithm
1: Input: G=(V,E)
2: Output: G’=(V’,∅)
3: V’=anonymize-nodes(V)

Figure 8.6: Algorithm for anonymizing graph data by removing the edges

8.2 Graph-based privacy attacks

According to Li et. al. [79], there are two types of privacy attacks in data:

identity disclosure and attribute disclosure. In graph data, there is a third type of at-

tack: link re-identification. Identity disclosure occurs when the adversary is able to

determine the mapping from an anonymized record to a specific real-world en-

tity (e.g. an individual). Attribute disclosure occurs when the adversary is able to

infer the attributes of a real-world entity more accurately than it would be possi-

ble before the data release. Identity disclosure often leads to attribute disclosure

[79]. Both identity disclosure and attribute disclosure have been studied very

widely in the privacy community [5, 7, 13, 24, 56, 79, 93, 112, 113, 114, 130, 136].
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Rather than focus on these two kinds of attack, the focus of our chapter is

on link re-identification. Link re-identification is the problem of inferring that

two entities participate in a particular type of sensitive relationship or commu-

nication. Sensitive conclusions are more general statements that an adversary can

make about the data, and can involve both node, edge and structural informa-

tion. These conclusions can be the results of aggregate queries. For example, in

a database describing medical data informal about company employees, finding

that almost all people who work for a particular company have a drinking prob-

lem may be undesirable. Depending on the representation of the data, this can be

revealed by using both the node attributes and the co-worker relationship.

8.3 Link re-identification attacks

The extent of a privacy breach is often determined by data domain knowl-

edge of the adversary. The domain knowledge can influence accurate inference

in subtle ways. The goal of the adversary is to determine whether a sensitive rela-

tionship exists. There are different types of information that can be used to infer a

sensitive relationship: node attributes, edge existence, and structural properties.

Based on the domain knowledge of the adversary, she can construct rules for

finding likely sensitive relationships. In this work, we assume that the adversary

has an accurate probabilistic model for link prediction, which we will describe

below.

In our running example, the sensitive friendship link may be re-identified
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based on node attributes, edge existence or structural properties. For example,

consider two student nodes containing a boolean attribute “Talkative.” Two

nodes that both have it set to “true” may be more likely to be friends than two

nodes that both have it set to “false.” This inference is based on node attributes.

An example of re-identification based on edge existence is two students in the

same research group who are more likely to be friends compared to if they are in

different research groups. A re-identification that is based on a structural prop-

erty such as node degree says that two students are more likely to be friends if

they are likely to correspond to high degree nodes in the graph. A more complex

observation is one which uses the result of an inferred relationship. For example,

if each of two students is highly likely to be a friend with a third person based on

other observations, then the two students are more likely to be friends too.

8.3.1 Link re-identification using observations

We assume that the adversary has a probabilistic model for predicting the

existence of a sensitive edge based on a set of observations O: P (esij|O). In this

work, we assume a simple noisy-or model [123] for the existence of the sensitive

edge. The noisy-or model can capture the fact that each observed edge con-

tributes (in a probabilistic way) to the probability of the sensitive edge existing;

it makes the simplifying assumption that each factor is an independent cause for

the sensitive edge. Here, we focus on re-identification based on edge existence,

so the observations that we consider are sets of edges, elij . For simplicity, we label
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these observations o1, . . . , on. For each observed edge, we assume that we have a

noise parameter, λ1, . . . , λn, and, in addition, we have a leak parameter λ0 which

captures the probability that the sensitive edge is there due to other, unmodeled,

reasons. A noise parameter λi captures the independent influence of an observed

relationship oi on the existence of a sensitive relationship. Then, according to the

noisy-or model, the probability of a sensitive edge is:

P (esij = 1) = P (esij = 1|o1, ..., on) = 1−
n∏
l=0

(1− λl)

The above formula applies only when the observations are certain. It is

also possible that the observation existence is not known. In that case, there are

probabilities P (o1), . . . , P (on) associated with the existence of each observation,

and the probability of a sensitive edge is:

P (esij = 1) =
∑
{o}

P (esij = 1|o)
n∏
k=1

P (ok)

where

P (esij = 1|o) = 1− (1− λ0)
n∏
l=1

(1− λl)ol

More details about this model can be found in [132].
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The noisy-or function is applicable when there are a few observations that

can cause an event, and each one can contribute positively to the likelihood of

the event, independent of the rest. The function has some nice properties: 1)

the result of it is always between 0 and 1 when the input probabilities are in that

range; 2) the final result is independent of the order in which the observations are

added; 3) it can accommodate different number of observations; 4) adding a new

positive observation always increases the overall likelihood. We use this function

to measure how likely each sensitive relationship is, and to find whether there are

parts of the graph that are vulnerable to an adversary attack. It is also possible to

express the dependence between events in an explicit probability model such as

a Bayesian or a Markov network, when the dependences between observations

are known.

8.3.2 Amount of information disclosed

Based on the noisy-or model for each pair of nodes, it is possible to deter-

mine the number of node pairs that are likely to participate in a sensitive relation-

ship. In the anonymized data, it is desirable to have few sensitive relationships

which can be inferred with high likelihood. To formalize this desirable property,

we can compute the percentage of all possible two-node relationships which have

a high likelihood and make sure that it is below some allowed level δ:

|relationships(P (esij) > ρ)|
|V |2

< δ (8.1)
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where ρ is the threshold for predicting that a sensitive relationship exists

and relationships(P (esij) > ρ) returns the set of all sensitive relationships which

have likelihood above ρ. For example, if it is true for the given data that 15%

of the possible pair relationships have a true likelihood of exhibiting a sensitive

relationship higher than 0.8, then

|relationships(P (esij) > 0.8)|
|V |2

<= 0.15.

For each anonymization technique, it is possible to find the highest possible δ that

satisfies a particular ρ level. This can be used to compare the privacy preservation

for each technique. The higher the δ, the lower the privacy preservation.

8.3.3 Utility

Utility in the data is hard to measure, and we make an assumption that

the more observations there are in the anonymized data, the better. To measure

utility, we use a very simple approach. We count the number of observations

which were removed in the process of anonymization. The lower the number of

removed observations, the higher the overall utility. For the intact edge and the

cluster-edge anonymization techniques, no relational observations are deleted,

therefore, these two techniques have the highest utility. For the partial edge re-

moval technique, the utility depends on the percentage of edges removed. For

the cluster-based with constraints technique, it is much lower, since the graph

is collapsed, and many edges are removed. The exact number can be computed
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using the properties and constraints of the data such as number of nodes, edges

of each type, and the size of the equivalence classes. Note that a more sophisti-

cated measure of utility would also consider the loss of structural properties in

the anonymized data. In the case when all the edges are removed, the utility is 0.

8.4 Link re-identification in anonymized data

In the first two types of link anonymization (intact and partial), the noisy-or

model can be used directly to compute the probability of a sensitive edge. In the

other two cases, one has to consider the probability that an observed edge exists

between two nodes, and apply the noisy-or.

8.4.1 Link re-identification in cluster-edge anonymization

In the case of keeping edges between equivalence classes, the probability of

an observation existing between two nodes is not given and it needs to be esti-

mated. The noisy-or function will need to take into consideration the probability

associated with each observation in order to compute the likelihood of a sensi-

tive relationship. When the number of relationships of each type (e.g., course,

research group, etc.) between two equivalence classes is given, the distribution

is not uniform, and the probability of an observation P(o)=P(observation(vi, vj))

existing between two students can be computed directly from the counts of rela-

tionships between their equivalence classes. P(ehci,j) expresses the probability that

there exists a class edge between any two students vi and vj from two equivalence
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classes C(vi) and C(vj), i.e., the students take a course hc together. It is equal to

the number of possible student pairs from the two equivalence classes who take a

course together as a fraction of the number of possible relationships in the graph

|V |2.

8.4.2 Link re-identification in cluster-edge anonymization with

constraints

In the constrained cluster-edge anonymization approach, the number of re-

lationships between equivalence classes is not given. Therefore, the probability

of an observation existing between any two edges has to be taken into account

in the noisy-or model. To estimate this probability, an adversary can assume a

uniform distribution, meaning that the probability of an observation existing be-

tween any two edges is the same for all edges in the graph. This estimate is worse

than the cluster-edge anonymization method. Using the constraints on the data,

it is possible to get estimates of this probability. For example, if it is known that

there are 50 pairs of students who take courses together, and there are 100 possi-

ble pairs, then the probability of any two students taking any class hc together is

P(ehci,j)=0.5. If the adversary knows the number of offered courses m, the number

of courses per person n, the number of students s = |V |, and assumes that all

courses have the same number of people p = s∗n
m

, then the number of possible

pairs who take courses together can be calculated as n ∗ (p − 1). This number

can be used to compute in a manner similar to the cluster-edge anonymization
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method P(ehci,j)=
n∗(p−1)
|V |2 .

One can also use an expected value of any two-node relationship to be sen-

sitive by looking at the likelihood distribution of all relationships. However, we

found that this does not measure privacy well because an adversary is more in-

terested in the highly likely relationships.

An observation probability shows the percentage of edges between two

nodes from two different equivalence classes that contain the observation. For

example, if the two equivalence classes have exactly 10 nodes each, and the

observation exists for 30 of the two-node edges, then the edge probability is

P(observation(vi, vj))=0.3 where observation(vi, vj) is either ehci,j , or ehgi,j for

any hc and hg. This increases the utility of the data as compared to the case when

no probabilities are included, but it can also decrease the privacy preservation.

An exception is the case when observations between equivalence classes have

exactly the same distribution as the overall uniform distribution.

8.5 Experiments

The effectiveness of the anonymization approaches depends on the struc-

tural and statistical characteristics of the underlying graph. In order to study

the influence of each anonymization approach on privacy preservation, we apply

them to synthetic data generated under varying statistical and structural assump-

tions and compute the information disclosed. We show how many relationships

are revealed at different probability thresholds. First, we describe the data gener-
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ator.

8.5.1 Data generator

The data generator creates data according to the data model described in

Section 1.1. The input to the data generator includes: the number of nodes, maxi-

mum number of nodes which can participate in a relationship (e.g., the maximum

number of students taking the same class), the maximum number of relationships

that each student can have with any other student (e.g., maximum number of

classes that a student can take). For all observation types, the probability of two

nodes exhibiting a sensitive relationship given the observation type is given and

the leak probability, the probability of two nodes exhibiting a sensitive relation-

ship due to unobserved causes.

For the concrete example, the data generator starts by creating a set of stu-

dents, a set of classes, and a set of research groups. There are constraints on how

many classes each student takes, and on how many research groups each student

belongs. There are also constraints on the maximum number of students per class

and on the maximum number of students per group. For each student, the gen-

erator picks random classes to enroll into up to the maximum number of classes

per student possible. Similarly, each student is assigned to a random research

group.

The nodes in the data graph represent students. There is a ehc edge connect-

ing two students for each class they take together, and there is ehg edge if they
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belong to the same research group. These pieces of information represent obser-

vations indicating that two students may be friends, i.e., that they may exhibit a

sensitive relationship. The ground truth is generated by computing the proba-

bility of a friendship between each two students using the noisy-or model, and

assigning the friendship a true value with a probability equal to that likelihood.

The parameters given to the data generator can be varied. We explore

graphs which vary in their density, therefore we allow the number of classes and

research groups to vary while fixing the number of nodes/students to 100. The

constraints on the data are that each student takes two classes, and belongs to one

research group. Also, a class can have no more than 25 people, and a group can

have no more than 15. We picked probabilities which make sense in the domain.

The prior probability of two students knowing each other is P(esi,j)=0.2. It is rela-

tively high because the students are from the same department. The probability

that two students know each other if they are in the same class hc is P(esi,j|ehci,j)=0.4.

The probability that two students know each other if they are in the same research

group is P(esi,j|e
hg
i,j)=0.6.

8.5.2 Evaluating privacy preservation in anonymized data

We begin by studying the privacy preservation in the data that results from

each of the anonymization techniques. In particular, we study the number of

correctly identified sensitive relationships for the following anonymization func-

tions: 1) when the anonymization function leaves the edges between nodes in-
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tact (8.1.2), 2) when it removes 50% of the observations chosen at random (8.1.2),

3) when it leaves edges between node equivalence classes in the cluster-edge

anonymization (8.1.2), and 4) when it leaves edges between node equivalence

classes with a constrained number of observations (8.1.2). For the last two, each

node is assigned randomly to an equivalence class. We vary k, the number of

nodes in each equivalence class, and show the results for k = 2 and k = 6 because

they exhibit the tendencies of varying k well.

Figure 8.7: Comparison between the number of sensitive relationships found af-
ter each of six anonymization techniques has been applied. The number of re-
vealed friendships decreases as the friendship likelihood threshold increases. The
two constrained cluster-edge methods (at k = 2 and k = 6) reveal the same num-
ber of relationships in both graphs. In the sparse graph, the cluster-edge method
at k = 6 (not constrained) also overlaps with the two constrained methods.

The data was generated with the default parameters, varying the number of

classes and the number of research groups between 10 and 30. A graph, in which

there are 10 research groups and 10 classes, is very dense, and a graph at the other

extreme with 30 research groups and 30 classes is very sparse. We show these

229



“extreme” cases in Figure 8.7 and Figure 8.8. To account for the randomness in the

generated graph, we ran the experiments on 100 generated graphs, and present

the average performance. Note that when using the default data parameters (at

most two classes taken by each student and at most one group of which a student

is a member), the maximum possible likelihood for their friendship is 0.89.

Figure 8.8: Comparison between the precision of predicted friendships found
after one of six anonymization techniques has been applied. At low threshold
values, the number of revealed friendships is large but the precision is low. The
precision of the method that removes 50% of the edges at random overlaps with
the precision of the intact-edge method in the sparse graph, and nearly overlaps
in the dense graph. The precision of the two constrained cluster-edge methods
(at k = 2 and k = 6) overlap as well.

We measure the precision, recall rate and the number of inferred sensitive

relationships in the anonymized graphs. The precision shows how many of the

predicted sensitive relationships are true sensitive relationships. The recall rate

measures what portion of the true sensitive relationships can be predicted. Trans-

lated into the privacy domain, the recall rate measures what portion of the true

sensitive relationships have been compromised, and the precision shows what is
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Figure 8.9: Comparison between the precision at different classmate density lev-
els (a)) shows that at high density levels, the cluster-edge anonymization preserve
privacy as badly as the anonymization which deletes 50 % of the edges. More-
over, the recall rate at these levels (b)) is much higher for the cluster-edge method.
The groupmate density is kept constant at 0.1.

the chance that a predicted relationship is really a sensitive one. For example, if

the analysis predicts 10 sensitive relationships and only 5 of them are true, then

the precision is 0.5. If there are a total of 100 true sensitive relationships in the

network, then the recall rate is 0.05. Ideally, a model for predicting sensitive in-

formation should have a high precision and a high recall rate when tested on

the original data, and a low precision and a low recall rate when tested on the

anonymized data.

A low precision in the anonymized data is more crucial than a low recall

rate. A combination of a high precision with a low recall rate in the anonymized

data is undesirable because it means that the anonymization can hide most of the

sensitive relationships but the ones that can be predicted are highly likely to be

true. Results with a low precision and a high recall rate are not as bad. In this case,
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even though the anonymization allows many of the true sensitive relationships

to be predicted, the true sensitive relationships are indistinguishable from many

non-sensitive relationships.

8.5.3 Results

Figure 8.7 shows a comparison between the number of sensitive relation-

ships inferred after each of six anonymization techniques has been applied. It

shows that at higher thresholds (0.6 and 0.8), keeping all the edges between node

equivalence classes preserves privacy much better than deleting 50% of the two-

node edges, while having higher utility as discussed in Section 8.3.3. As expected,

for lower k, the privacy preservation is lower: the number of revealed relation-

ships is higher in the data anonymized with the cluster-edge method. In the data

anonymized with the cluster-edge method with constraints, varying k yielded to

the same results, which is why the graphs of k = 2 overlap with the graphs, in

which k = 6.

We also ran the experiments for other combinations of class and group pa-

rameters in the range [10,30]. The experiments confirmed that as the number of

observed edges decreases, so does the number of correctly identified sensitive

relationships. However, the behavior at different thresholds is proportionately

the same for all anonymization methods except the cluster-edge method. In the

cluster-edge method, the privacy is preserved better in the sparse graph for both

k levels, as seen by comparing the dense and the sparse graph results at threshold
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0.4. In the sparse graph, the results when k = 6 are the same as the ones of the

cluster-edge with constraints.

Figure 8.8 shows that even though lower probability thresholds reveal more

sensitive relationships, the precision is low. At higher probability thresholds, the

precision is high but on a very small number of predicted relationships.

Experimenting with the number of nodes in the network showed that the

precision and sensitivity results were invariant to the network size when the

friendship, groupmate and classmate densities were kept constant. The density

values were 0.36, 0.1 and 0.2, respectively. The tested networks were of size 100,

200, 300 and 400 nodes. Other constant parameters were the number of groups,

10, the number of classes, 10, and the k-anonymization parameter k = 6.

We also varied the multigraph classmate density by varying the number of

classes each student joined. Since this parameter was used in the data generator

as well, it affected the friendship density of the original graph. The correlation

between the two densities was positive. We found that at high classmate den-

sity levels the claim that the cluster-edge anonymization preserves privacy bet-

ter than the anonymization which deletes 50% of the edges no longer held. As

Figure 8.9a) shows that as the class density goes above 0.4 (friendship density

is 0.63), the precision of predicted sensitive links is almost the same for the two

methods. Moreover, as Figure 8.9b) at levels above 0.5 (friendship density is 0.76),

the data anonymized with the cluster-edge method has much higher recall rate.

Again, the number of nodes was 100, the number of groups was 10, the number

of classes was 10, and the k-anonymization parameter k was 6.
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8.6 Conclusion

Here, we presented the problem of link re-identification. We have proposed

several approaches for anonymizing graph data and done an initial empirical

evaluation of the effectiveness of the different strategies. Understanding and ap-

preciating the subtleties in the effectiveness of techniques is an important and

timely topic for data providers interested in releasing social network datasets.
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Chapter 9

Conclusion

Real-world social network data exhibits complex interactions and depen-

dencies. Understanding the processes that govern the generation of user content

and network growth in social media is not trivial, and the predictive and descrip-

tive algorithms in this domain need to reflect the inherent structure of the data.

In this thesis, we have taken an initial step towards understanding the user

behavior in social and affiliation networks. We have shown the importance of

studying both social and affiliation networks in a variety of settings. In particu-

lar, we addressed the following three related subject areas: 1) prediction of user

attributes and latent user preferences, 2) network evolution and link prediction,

and 3) privacy in social networks. Our work suggests that affiliation networks are

just as important if not more important when studying online social networks.

The information in them complements information found on the social network

built around pairwise, or user-user links. Social and affiliation networks allow

us to study the macro behavior and micro incentives of users and to build better

235



user behavior models. Our work also shows that affiliation network informa-

tion is very important to take into account when studying privacy issues in social

networks.

With this thesis, we hope to motivate further research in social and affil-

iation networks which goes beyond pairwise interactions and studies models

for complex group behavior using observed and unobserved user characteris-

tics, roles and interactions. Exciting new directions include exploring principled

approaches to modeling collective group behavior in complex networks to gain

insight into people’s motivations, preferences and interests, and developing dy-

namic network evolution models which consider not only structural properties

but also attribute correlations. We envision a number of applications for these

types of models, such as building better personalized services which focus on

both the predictive and privacy aspect of the algorithms, studying human emo-

tional and physical health based on people’s support networks, as well as design-

ing more successful marketing or political campaigns.
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